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Abstract

Measuring the level of new product success baseats ampact in a given market
is very important. Is it possible to create aafeproduct measures that can be used to
assess market impact based on product historicaloeaic factors, functionality, and
physical attributes? The approach of this reseaigkchto assess whether the
transdisciplinarity of new products has a measerafffiect on product success. As part
of this dissertation, multidisciplinary theories design and innovation—such as TRIZ,
innovation management theory, functional basis ebigh, and economics—were
reviewed to create a set of transdisciplinary rastriFirst, natural language processing of
patent data is used to quantify the number of prbfitnctions and physical components
to estimate product degree of ideality. In additia prediction model is created using
neural network regression techniques to predictieékiel of invention of a new design.
Next, a semantic functional basis of design is tectdo measure a product’s level of
functional synthesis. This metric is constructgdibing natural language processing and
latent semantic analysis to generate a functiomalisbfor ten disciplinary areas of
research. Finally, a set of novel transdisciplnaretrics were developed. This set of
metrics can be used to quantify the transdisciptyaf functional and physical terms
based on their use in ten disciplinary areas. éalenetwork prediction model is trained
using these transdisciplinary metrics to prediet iarket impact of a product based on
patent citation measures. These metrics are tasteédy machine learning to train

prediction models, validate the models, and teslehprediction results using test data

Vi
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sets. The new method for predicting a producwgllef invention received a correlation
coefficient of .98 for training data and .90 fosttelata representing a high accuracy in
prediction results for the model. In addition, thew set of transdisciplinary metrics
received a correlation coefficient of greater tha@ based on test results and validates
the contribution of this research. The researchritmrtion is a method for creating a set
of transdisciplinary metrics and the applicationtleése metrics in a machine learning

model to predict the success of new designs.
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CHAPTER 1

INTRODUCTION

1.1 Statement of Research

This research demonstrates how the integration eifios from engineering design
processes such as TRIZ [1], Innovation Managenn8], Functional Basis of Design
[4, 5], and economics can be used to form the bafss new set of transdisciplinary
metrics. The current research includes machinmailegtechniques and approaches such
as artificial neural networks [6-8] to construcegictive models using patent data from
the National Bureau of Economic Research (NBER) Hinited States Patent Office
(USPTO) patent databases. This includes creatingetaof independent variables
consisting of a set of transdisciplinary metriceedisn a machine learning model
employed to predict the market success of new dssigfo complete this task a set of
patent data was mined to extract functional andsiglay descriptions used as part of a set
of transdisciplinary metrics. This includes measyithe transdisciplinarity of functional
and physical terms mined from text and using 2hddésciplinary measures to
characterize the transdisciplinary (inter-disciphyy mono-disciplinary, bi-disciplinary,
etc) composition of a new invention. These metaos used in a predictive model to

predict the innovation potentialmarket successof meentions.

The objective of this research is to develop a oettio measure the degree by which

new designs integrate knowledge across multipleiglinses. This objective is fulfilled
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by first creating a predictive model using patatdtmn measures to estimate the level of
invention of a new design. Next, a method is @@db develop a semantic functional
basis of design for multiple disciplinary reseaartbas. The semantic functional basis of
design is used to measure the use of functionaiy physical attributes in new
inventions. The ability to measure the use of finmality and physical attributes enables
the creation of set of transdisciplinary knowledgtegration measures. The research
topic investigated is the possibility to generatnsdisciplinary knowledge integration
measures based on the use of terms that span aoarsg disciplines. Next is an

overview of the motivation of this research.

1.2 Motivation

The use of data mining and machine learning teclasdacilitates the discovery of
new knowledge from existing data. The NBER and USPonline patent databases
include a large amount of design data that provigesght into how integrating
technologies from multiple disciplines can incretise market acceptance of a design.
Can this information be used to develop transdis@py metrics for new designs that
measure how increasing the use of transdisciplirdegign, process, and science
approaches may improve the probability that a nesigh will succeed? The next

paragraphs will discuss the current motivationtfas research.

The defense industry is a good example of an imgustterested in system
integration. The systems integration paradigm seta the integration of technologies

from many product categories to enable the execuifoa capability or broader system
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function. Increasing the ability to measure thecess of product innovation will benefit
the defense and commercial industries greatly breasing the breadth of and impact of
the technologies employed. Developing design geto quantify the transdisciplinarity
of a new design helps programs increase theirtahdi integrate new technologies and
measure the success of a design based on the t#velegration across diverse fields
and different facets of a company. Using patetd tiaunderstand how the integration of
diverse technologies has increased the level afvation provides a useful model for

industry to predict he success of future produgketipments.

Currently, Microsoft is performing research on tlse of learning Bayesian networks
to find surprising events in large amounts of tiseeies data [9]. Example surprising
events include sporting events, townhall meetingsd other community events that
affect trafflic flow and congestion. Furthermorbe tNational Science Foundation has a
current initiative titled “Next Generation of Dak&ining and Cyber-Enabled Discovery
for Innovation [10].” This initiative considershuse of data mining and knowledge
discovery to discover knowledge from distributedladacross the World Wide Web. All
of these current areas of research within academdcindustrial fields contribute to the
motivation for the research discussed in this diagen. Next, is an overview of the
main objective of this research including a disaussof establishing a set of

transdisciplinary metrics for measuring the probigbof success for a new design.
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1.3 Main Obijective

The main objective of this research is to develgetatransdisciplinary metrics used
in a predictive model to predict the success of degigns. Invention is the first instance
of a new design. The transdisciplinary metrics ldisthed as part of this research are
based on functionality and physical attributes arel used to build a machine learning
model used to predict the success of new inventiéits a new idea such as a generated
patent, the measure of acceptance is based oruthben of citations or the number of
grant dollars received. For new designs, meassuel as market success based on

patent citations and breadth of impact are usedeasure the success of new designs.

This research reviewed common design metrics used éxisting transdisciplinary
[11, 12] design theories that are proposed to ingrddesign or idea. Transdisciplinary
design processes reviewed include the Theory ddritive Problem Solving (TRIZ) [1,
13-15], innovation management [1-3, 16-19], funtéb basis of design [4, 5], and
economics. This set of transdisciplinary desigroties are reviewed to establish a set of
transdiscplinary metrics used in a machine learnioglel to predict the success of new

inventions.

The relationships in the predictive models wereetigyed using the techniques of
data mining, text mining, natural language procegsiatent semantic analysis, and
machine learning by utilizing mathematical openasicuch as regression, classification,
supervised learning, and statistical analysis. fd section includes a discussion of the

research question for this dissertation.
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1.4 Research Question

This research answers the question of how can resigms be evaluated based on
their use of transdisciplinary design, process scidnce approaches? In addition, is
there a link between the use of concepts from ndisgiplines and design breadth of
impact on future inventions? Finally, can traneiisnary knowledge integration
measures be employed to measure new design suandssconomic impact in the
marketplace? The methods used in this dissertatiolude an approach to extract
physical and functional information from patent ctg#tions. In addition, a set of
transdisciplinary metrics are constructed to prethe success of new products and
designs using machine learning techniques. A $eindependent variables were
constructed using patent data from the NBER and T@sPatent databases. A set of
dependent variables were selected from previousipneld NBER patent data fields. The
dependent variables selected include forward inapod, citations received and
generality. The independent and dependent vasaidee used to form the basis of a set
of predictive models. The predictive models set thasis for prediction using the
transdisciplinary metrics to evaluate the succdssew products and designs. Finally,
the transdisciplinary metrics are validated usingredictive model to evaluate product
success using a subset of the patent data to ttrairmodel and the remainder of the
patent data to verify the model and validate thé&ricge The next section will discuss the

significance of this research.



Texas Tech University, Christopher M. Adams, Decen#®09

1.5 Significance

The significance of this research is centered ennied to form a transdisciplinary
basis for measuring the success for new productsiasigns. Currently, a set of metrics
that unifies engineering design concepts from mdisgiplines does not exist. In
addition, data mining and machine-learning techesqinave not been significantly
employed to generate a predictive model that ptediesign success based on the use of
cross-disciplinary knowledge. Two areas of curresearch that are exploring the use of
data mining and machine-learning techniques andoappes to generate new knowledge

are the activities conducted by the National S@draundation and Microsoft.

The National Science Foundation currently has #raiive titled “Next Generation
of Data Mining and Cyber-Enabled Discovery for Iaaton [10].” Performing research
in the area of data mining of NBER patent datab§@lswill augment current research
performed by the National Science Foundation. Iditaxh, Microsoft is performing
research on the use of learning Bayesian netwarkBnt surprising events in large
amounts of time series data [9]. Microsoft’'s reskancludes creating a directed graph
of events that affect the flow of traffic. Noders the graph include sporting events,
holidays, weather, time of day and other factoed thay result in traffic congestion. The
significant contribution of this research is to daypdata mining and machine-learning
techniques and approaches to form predictive maithels can be used to evaluate the
success of new designs. In addition, establishidgfinition and means to quantitatively
measure the transdisciplinary metrics and validlaée measure of existing engineering

design metrics will provide a contribution to thmartsdisciplinary field of research.
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1.6 Scope of Work

The next section will provide an overview of therwdincluded in this doctoral
dissertation. It includes a summary of using corapaided methods to estimate TRIZ
metrics and TRIZ concepts like contradictions, gsimatural language processing and
latent semantic analysis to develop a semantictifumad basis of design, and building
prediction models using a set of novel transdigtgpy metrics as inputs to an artificial

neural network model.

1.6.1 Computer-Aided TRIZ Metric Estimation

Degree of Ideality is defined in TRIZ as “The ben&f cost ratio of the system or the
ratio of its functionality to the sum of variousst® associated with the building and
functioning of the system” [1]. In addition, a dgsis level of invention is defined based
on the type of design conflict resolved for a neweintion and the number of disciplines

used in resolving the conflict [2].
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Table 1-1 includes the criteria for the five levefanvention from TRIZ. This table also

includes the percent share of US patents thatstimagted to be level 1 — level 5.
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Table 1-1 TRIZ Five Levels of Invention

Level Criteria Share

Level 1 Apparent solution: A component intendedtfar task is used. No system32%

conflicts are resolved.

Level 2 Small improvement: Existing system slighitiodified. System conflicts| 45%

are resolved by the transfer of a solution fronmalar system.

Level 3 Invention inside paradigm: System cordliate resolved by radically 19%
changing or elimination at least one principal sgstomponent. Solution

resides within one engineering discipline.

Level 4 Invention outside paradigm: System cotdlare resolved. A new systen?1%

is developed using interdisciplinary approaches

Level 5 Discovery: Resolving system conflicts ffesin a pioneering invention. | <0.3%

Often based on recently discovered phenomenon.

An approach for calculating a patent’s degree eélitly and level of invention from
patent data can be created. These measures camedbé¢o identify example designs that
can be used as reference points during early phafsdse design process to support
design functional modeling and concept generat®ymd]. This research will discuss a
computer-aided approach for extracting design fanat and physical information from
patent data. This approaetill be used to generate hierarchical and non-hifieal
functional and physical models that are utilizedegiimate TRIZ metrics. First, an
overview of the use of natural language processihgatent data to extract design
information from patents is provided. Second dissi®n describes the use of patent
design information to estimate the degree of idgdtir each patent. Next this research

provides a discussion of how patent citation mezs{f], such as originality, number of
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backward patent citations made, number of forwaateqt citations received and the
mean forward and backward citation lag can be @asettaining data to classify patents
into the five levels of invention using machinertlgag techniques. Finally, section a
discussion of how TRIZ metrics such as degree @4liy and level of invention can be
used to support design concept generation andifurattmodeling during early phases of

the design process.

1.6.2 Developing a Semantic Functional Basis of Design

The next section includes an overview of using rstlanguage processing
techniques to verify the functional basis of dedignmechanical engineering developed
by Stone and Wood. In addition, a method to gdeemafunctional basis of design for
other disciplines is discussed. This semantic tfanal basis of design is used to

calculate transdisciplinary metrics.

1.6.2.1 Verification of Functional Basis of Mechanical Design

In order to verify the functional basis of mechahidesign proposed by Stone and
Wood, the frequencies with which mechanical fun@i@ppear in patents is analyzed.
First, the functional terms listed in the Class;@wlary and Tertiary lists are analyzed to
determine with what frequency they appear withia gatent descriptions. Stone and
Wood claim that the functional basis of mechantegigns in [4, 5] represent a set of
mechanical design functions that can be used ttuaeanew designs in the design
process. Upon analysis of the term frequenciegag discovered that Class functions

from functional basis of design do not appear agiuently in patent descriptions. The

10
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function terms Branch, Channel, Signal and Prowmisiohich reside in the Class

(primary) category of mechanical functions, did apipear frequently in the analyzed
patents. This suggests that a semantic functibasis of design must be developed to
capture all potential functional terms used by giesi This is performed by using natural
language processing to extract design functiondldyn text. Furthermore, a semantic
functional basis of design is developed based angugerbs and objects that appear

frequently in patent descriptions.

1.6.3 Developing transdisciplinary Knowledge Integration Measures

The functional basis of design, developed by Stam& Wood, [4, 5] provides a
taxonomy of commonly used functions employed by maedal designs. The functional
basis of design provides a list of functions thert be used by designers to represent the
operations performed by a mechanical device orfaatti Created as part of the
engineering design process, the functional architeaepresents the purpose of a design
including how functions are used to meet custoneguirements. The functional
architecture of a design represents functions amgHsnctions implemented by a
system’s design parameters and physical componémdszidual functions are expressed
as action verbs and objects that represent a sydtrite, or sub-functions performed by
one system component on another system component.

The starting point of this activity is the use bétconcepts from functional basis
of design to generate a list of physical desigmgeand functional terms. This list of
functional and physical terms is extracted from USPpatent documents to develop a

list of basic terms used by different discipline§he list of functions and physical

11
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components are used in assessing the transdisgipfiof new designs and products.
This measurement is based on the use of a sebpbged transdisciplinary metrics. This
measurement uses the frequency of terms that appeaa new invention.
Transdisciplinary metrics are used to assess tbeesa that a new design or product can
expect in terms of breadth of impact on other potsltand economic impact. The
importance of this method is to understand howdifierence between using “abstract
and case specific knowledge” [12] influences desigd product success. Higher values
of design transdisciplinarity indicate a higher g of design abstraction or
“generality,” and a lower value of design transgiboarity shows a more case-specific

product or design.

1.6.4 Overview of Dissertation Sections

The second section of this dissertation providesaekground of the current
research consisting of a literature review of aofrrengineering methodologies that are
used in this work to create a set of transdiscipiinknowledge integration measures.
These engineering methodologies include transdisaily and interdisciplinary research,
the theory of inventive problem solving (TRIZ), atite functional basis of design. In
addition, natural language processing (NLP) soféwdatent semantic analysis (LSA),
and current implementations of text mining to esttidesign functional descriptions from
patent text, and current research in the field @fchme learning will be discussed.
Chapter 3 of this dissertation presents the theatetapproach taken to establish
transdisciplinary knowledge-integration measuresaddition, included in chapter 4 of

this dissertation is a description of the softwarehitecture developed and the software
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implemented to extract the functional and physidakign terms from patent text
descriptions, perform latent semantic analysis@amnttipal component analysis (PCA) to
create a list of functional and physical desigmifor each discipline, and extract first-
and second-generation patent citations to mea$ierdorward importance of a patent.
This includes providing an overview of software Iempented in the Visual Basic
programming environment for the analysis. Chaptgiresents a method to test the
transdisciplinary metrics by using the metrics imeural-network machine-learning
model to predict invention importance and breadtlinmgpact. Finally areas for future
research are discussed, including the further uletramsdisciplinary knowledge
integration measurements—calculated from paterdrigt®ns—to predict probability of
success for new designs. Figure 1-1 providesva ¢loart that shows the structure of this
dissertation. It includes the major chapters & thssertation as well as supporting

appendices.

* # %

v
v

Figure 1-1 Flow Chart Showing Dissertation Structue
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CHAPTER 2

LITERATURE SURVEY

2.1 Transdisciplinary Research

Transdisciplinary design process and science pesvadnovel method for generating
products that have depth and breadth of impacuturd engineering outcomes. Tanik,
Ertas and Maxwell in [21] discuss a novel reseanddel for transdisciplinary Design
Process and Science education. In addition, Gum[Z2] developed a transdisciplinary
life-cycle management process based on the metbbdsxiomatic Design [23] and
Complexity Theory [24] developed by Suh. In aduitiChapter 1 of thelandbook of
Transdisciplinary Researcljl2] cites the following aspirations of transdmary
research:

a) “to grasp the relevant complexity of a problem

b) to take into account the diversity of life-world darscientific perceptions of

problems
c) to link abstract and case-specific knowledge, and

d) develop knowledge and practices that promote whapedrceived to be the

common good”

Transdisciplinary metrics are constructed in thssertation to measure the amount of

abstract and case-specific knowledge in new desighss is performed to assist in
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developing designs that include a high level ofegality, creativity, and have a large
impact on future designs.

Other related transdisciplinary research includeshods for measuring transfer
of knowledge between disciplines. In [25], Bord@tsal. investigate cross-disciplinary
knowledge transfer between authors. Bordons &, glaper analyzes how authors
collaborate across different disciplines. The gsial performed in their dissertation is
conducted by reviewing bibliometric citations todenstand the flow of knowledge from
one discipline to another. The research in thésefitation is similar in motivation to the
research by Bordons et al. This dissertation preghass means to quantify knowledge
integration across multiple disciplines by devehgpa set of transdisciplinary metrics to
evaluate the mix of disciplinary knowledge residmighin new inventions. Breschi et al.
also discuss the subject of knowledge flows betwssdants in [26]. They discuss links
that exist between citations made by patents tergtlatent documents and the linkage
that exists between citations made and citatioosived by patents. They infer that this
linkage is correlated with knowledge flows betwaementors and that patent citation
data can be used to predict the economic and mauwkeess of new inventions.

Furthermore, Brusoni et al. in [27] investigate thieegration of knowledge between
scientific publications and patent data. Thisudes study of knowledge flows between
different firms and different technological sectoBrusoni et al.’s paper also includes an
overview of different knowledge generation proces3de paper discusses measures for
guantifying the breadth of a company’s knowledgeeba In addition, it proposes a

“Relative Specialization Index (RSI)” estimated &@on the number of citations that
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occur from different scientific fields. This is yesimilar to the measures of originality
and generality discussed by Jaffe and Trajtenberi@0]. Originality is based on the
number of citations made to different USPTO patdassification categories and how
these citations are distributed as a percentagleeobverall number of citations made to
patents in the past. In comparison, generality $émilar measure based on the number
of citations received in the future and whetheatept receives citations across a number
of different technological categories. The reseant this dissertation incorporates
generality from the work of Jaffe and Trajtenbengpoia method for quantifying the
breadth of an inventions’ impact. Machine-learnmgdels are developed as part of this
research to predict the breadth of impact that @ mevention will have, given the
mixture of functional and physical design inforneatiused across diverse disciplines.
Finally, Ziedonis et al. in [28] investigate theoeaomic value of patents based on the
number of citations they receive. Their reseamtiers there is a link between the
numbers of citations received by patents and tlb@auic and market success of a new
invention. This implies that patent citations dasnused as a success measure for new
inventions that is related to a patents’ economaice. This research demonstrates that a
predictive model can be created to predict the econ value of a new invention in
terms of its expected citations based on the fanatity and physical components that

are incorporated among multiple disciplines.

2.2 Engineering Design Process

Fey and Rivin define the concept of degree of iteals the following: Degree of

ideality: “The benefit-to-cost ratio of the systamnthe ratio of its functionality, to the
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sum of various costs associated with the buildimg) fainctioning of the system.” Degree

of ideality can be explained by the following qtedive formula:

Functionality
Costs+Problem

Degree of Ideality=

In addition, the idea of level of invention for awly generated patent, design or idea
is defined by Fey and Rivin [1] to be the followind.evel of Invention: “Altshuller

suggested dividing all inventions into five novdiyels[1]:
Level 1 A component intended for the task is uplmisystem conflicts are resolved.

Level 2 Existing system is slightly modified. Systeconflicts are resolved by the

transfer of a solution from a similar system.

Level 3 System conflicts are resolved by radicalyanging or eliminating at least

one principal system’s component. Solution reswligisin one engineering discipline.

Level 4 System conflicts are resolved and a newtesysis developed using

interdisciplinary approaches.

Level 5 Resolving system conflicts results in angiering invention (often based on a

recently discovered phenomenon.)”

Furthermore, Utterback and Suarez [19, 29] disthussoncept of Dominant Design
and how it is a key aspect of generating sustaimeolvation. Chen, Li, Huang and Roco
[30] discuss the creation of a patent citation mekwand use of the network to

understand knowledge transfer across technicalsfiel
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Additionally, Stone and Wood [5] developed a sefurfctions and functional flows
and further discussed this development in [4]. dional basis of design developed by
Stone and Wood defines functions and functionatdlohat will be useful as part of this
proposal research. As an extension to the resgartiiorth by Stone and Wood, the
research discussed in this proposal will suggdasgube functions defined in [5] to form
a typical set of functions employed by designs.nikty functions and functional flows
from patent data will enable the measurement ofdibgree of ideality [1, 5] for new

designs.

Functional basis of design provides a taxonomy arhmonly used functions and
functional flows employed by mechanical designs.he Tnumber of functions and
functional flows employed by a design also providesuseful metric for design
evaluation. [4, 5] Stone and Wood [5] developecatao$ functions and functional flows
and further discussed this development in [4]. Tumgher development of a semantic
functional basis of design defines functions amcfional flows that will be useful for
disciplines other than mechanical designs. PathlB&itz were among the originators of
creating a functional basis of design[31]. Theweleped a “generally valid list of
functions” consisting of the functior@hange vary, connect channe] andstorethat are
typically applied to the conversion of energy, miale and signals identified as the basic
objects residing in a verb-object pair. In additigttshuller, the founder of the theory of
inventive problem solving (TRIZ) [13], claimed thatl mechanical designs can be
described using 30 basic functions [13]. The NwlolInstitute of Standards and

Technology (NIST) also developed a general taxonofrfynctions to use as the basis of
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mechanical designs. This list consists of 100 fional flows and 130 functions that
make up the NIST taxonomy [32]. In addition, Kiraedn and Fadel also discuss the
classification of functions for mechanical desigioia taxonomy [33]. This article will
discuss natural language processing of patent tdaéxtract design information in the
form of action verbs, objects, and subjects thatdee a design in the form of a list of

design functions and physical components.

Table 2-1 Functional Basis of Design List of Medicah Functions includes a
taxonomy developed by Stone and Wood. This dissent will discuss natural language
processing of patent data to verify the claimstoh8 and Wood and discuss automating

the process of creating a semantic functional dasiswultiple design classes.
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Table 2-1 Functional Basis of Design List of Mechaocal Functions

CLASS | Secondary| Tertiary CLASS | Secondary| Tertiary
Branch | Separate Convert | Convert
Divide
Extract Provision | Store
Remove Contain
Distribute Collect
Channel | Import Supply
Export Signal Sense
Transfer Detect
Transport Measure
Transmit Indicate
Guide Track
Translate Display
Rotate Process
Allow DOF Support | Stabilize
Connect | Couple Secure
Join Position
Link
Mix
Control |Actuate
Magnitud
e
Regulate
Increase
Decrease
Change
Increment
Decrement
Shape
Condition
Stop
Prevent
Inhibit
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Currently, a set of metrics that unifies designaspts from many disciplines does
not exist. Jaffe and Trajtenberg discuss the afé¢dasicness,” which means that a new
idea is “basic” if it has a “diffused”, substantiaipact across a number of different fields
as well as a significant impact on a single fieRD][ In comparison, Rowlands
introduced the idea of journal diffusion factorsaasvay to “measure” the breadth of a
journal’s knowledge across literature [34] Thissvadso stated by Frandsen, et al. as the

transdisciplinary reception of a journal [35].

In addition, Jaffe and Trajtenberg also stated tihats necessary to develop
“backward-looking” and “forward-looking” measurebat will give insight into the
“basicness” of an idea [20]. Backwards-looking smeas give insight into the source
and the history of the research associated withdea and forward-looking measures
give insight into the impact the idea has on futdesas [20]. Therefore, it is possible to
develop a set of transdisciplinary metrics to useai machine learning model that
provides a method to predict he probability of @sscfor a new design/idea by looking at

the “backward-looking” measures that have histdijjazaused an idea to succeed.

2.3 Data Mining and Machine Learning

Knowledge discovery and data mining [6, 36-40]tahniques used to generate new
knowledge during from existing data. The fivepstenowledge discovery and data-
mining process is discussed by Kawasaki, Ho andh&ra [39]. The first step in the

data-mining process includes understanding the dorma which data resides and
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understanding problems that will be solved by ngrtime data. Step two in the process is
to collect and preprocess data. This step is th& mork intensive and costly part of the
data mining process because data may be retrievachumber of formats such as text
files, database files, multimedia files, etc. Ttheéd step in the data mining process
includes extracting patterns/models from the da@digscover new knowledge. The fourth
step of the process includes interpreting and ewizg the newly discovered knowledge.

The final step in the process is to use the miragd oh a pragmatic way.

Data mining can be very useful in the engineeriegigh process to help improve
one’s understanding of innovation. For exampléa aaining can provide designers and
inventors with a means to review historical maikends that lead to the development of
a new product or service. Data mining can also kefull in discovering new
technological and market knowledge by uncoveringsing technological events [9]
that result in new products, resolve design coittiahs [1], or result in a dominant
design [19, 29, 41]. It can also be useful to aetee when technological discontinuities

[2] may occur for a product or process resulting imew technological innovation.

Machine learning is defined as “extracting pattemgigvant to predictive attributes
using one or more” data mining algorithms [38, 42]. In addition, machine learning is
focused on the development of data mining algorstithat enable computers to learn
from data [8]. This research will explore manyfeliént data mining and machine
learning techniques in creating a set of transplis@ry metrics to estimate the potential

new designs have for innovative impact.
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Horvitz in [9] discusses mining of traffic congestidata and the use of the data to

predict surprising events. Horvitz defines suipgsevents as the following:

“To identify surprises, we compare the output af tharginal models with the real-
time states to identify rare flows and congestMfe mark these situations as situations

that would likely be surprising to users.” [9]

Basically, a surprising event is an unusual evlat tdoes not follow a model of

normal activities.

Zhu and Porter [44] discuss the concept of minimfigrimation from text. Ho and
Granat in [39] discuss the overall process of ngnavents through the use of data
mining. Daim et al. discuss the use of mining pataibliometric data in [45]. In
addition, Cascini, et al.. discuss implementingusatlLanguage Processing of patents in
[46-48], in order to automate the extraction ofgmétfunctional descriptions and design
components from a patented design. The complét@fskinctions extracted from a

patented design can be used to represent a patbesigph.

A list of a design’s functions and components carubed for analysis of patents to
determine the novel approach taken by the patetgsyn that formed the basis for the
patent. This information can then be used to devé&iansdisciplinary metrics related to
functional synthesis. The following machine leaghiand data mining techniques and
approaches were reviewed as part of this reseayehetic algorithms and genetic
programming [8, 49], support vector machines [#52(] artificial neural networks [6-8],

decision trees [8, 53-55], clustering [7, 8], amdrhing Bayesian networks [7-9, 56-58].
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Heckerman discusses learning Bayesian networks one ndetail in [56, 57]. An
overview of Bayesian networks including a discussab conditional independency and
directed acyclic graphs is included in [42]. Ather discussion of these techniques is in

included in Appendix C.

Kusiak in [59, 60] discusses a process for innavatind the link between the use of
data mining of patent data to define metrics fe@atvity and innovation. In his paper he
discusses data mining techniques such as clustanatysis, genetic programming and
decision trees. Kusiak also discusses methods TRiZ for resolving design conflicts

and contradictions.

Another form of data mining, also known as text imiyy consists of the use of natural
language processing to perform part of speech rigggi textual information to extract
relevant data from design descriptions. Test ngingalso referred to as information
retrieval, information extraction, or knowledge ragement. [61] A number of natural
language processing software packages have beetopded that help in the process of
extracting relevant information from textual deptions. One such software package is
MontyLingua [62]. MontyLingua [62] is a software \ddoped to perform natural
language processing of text. MontyLingua was immeted using the Python
programming language. MontyLingua is claimed td‘@e end-to-end natural language
processor with common sense” [63]. MontyLinguavptes different tools to process
English text that range from semantic processingieénings from text to summarizing
textual paragraphs and sentence summarizatioreifotin of verb, subject, object, object

phrases. MontyLingua is stated to contain “comraense” due to the incorporation of
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rule-based part-of-speech tagging methods originddlveloped by Eric Brill [64, 65].
Eric Brill's rule based process is incorporatediMontyLingua’s part-of-speech (POS)

tagger, MontyTagger.

There are currently multiple different approaches donducting part of speech
tagging of text. The first is by using statistitelsed stochastic processes to determine
the part of speech of words in a text using prdiieds. The second is based on using
rule based methods to perform part of speech tgggim general, stochastic part of
speech tagging methods use a Hidden Markov ModdiMiprocess where probabilities
are set by first assuming a fixed set of tags tatesent the part of speech for each word
in a text. The tags are also set by assumingehett word in a text is based on a fixed
vocabulary that forms the English language. Plspeech tagging is then performed by
looking at the process used to generate the teRichwmay consist of looking at
neighboring words that surround the text and ddateng the probability that a word in
the text is a noun, verb, adjective, adverb, easeld on an HMM developed using a set
corpus of documents as the basis for the stochastiel.

Typically the Brown Corpus is used as the basishef part of speech tagging
HMM. The Brown Corpus was used by Charniak at Brdwniversity to develop the
part of speech tagging model discussed in [66-68]he part of speech tagger used as
part of the MontyLingua engine is a form of thelBFagger developed by Eric Brill also
known as the MontyTagger [62-65]. The Brill Tagge a rule based part of speech
tagger that determines the part of speech for words text by reviewing the part of

speech of words that surround the word to be taggEde rule based part of speech
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tagger developed by Brill has seen a predictioa ot between 96.7 and 97.2% when
applied to the Brown Corpus [64]. This can be cared to the HMM part of speech
tagger developed by Charniak which has a prediatda of 96.45% when used on the
Brown Corpus [66-68]. The error rates from the tpart of speech taggers, whether
statistical or rule based are close to the same.apiproach taken as part of this research
uses the rule based approach for part of speegmtagsing the open source NLP engine
MontyLingua. The MontyLingua part of speech taggers selected due to its use of
open source software, ease of integration with rosloétware, and more efficient code
that does not rely on a large database of statistitag the part of speech for each word
in a text document. In addition, the results & MontyLingua software to extract SAO
instances were compared to the results obtainddvntion Machine Corporation using
their patented SAO extraction method [69]. FigR+& includes the SAO extraction for
the following source sentence as described in USPa@nt #6167370 assigned to
Invention Machine Corporation:

The present invention shields a noise of an extenagnetic field with

the slider and improves a recording performancealee the slider is

isolated magnetically.

Subject Action Object
Present Invention Shield Noise of External Magnetic Field
Present Invention Improve Recording Performance
Isolate Slider

Figure 2-1 Invention Machine SAO Extraction Example
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4 SADG167370.TXT N [w] B3
| Subject | Object 1 | Object 2 | Object 3
preszent invention hoize aof external maagnetic figld  with zlider
improve recording perfarmance because slider
izolate glider
a | 5

Figure 2-2 SAO Extraction From MontyLingua

Figure 2-2 provides the SAO extraction from Montygua using the same source
sentence. As can be seen from the two tables, @ extraction methods provide the
same results. The Invention Machine Corporatioterniad SAO extraction method is
also a rule based part of speech tagger.

Part of Speech tagging has also recently been rpeefb using support vector
machine methods. Use of support vector machinpsrorm part of speech tagging was
recently demonstrated by Gimenez and Marquez iih [Ahis method uses the widely
implemented SVMlight software to perform part ofesph tagging developed by
Joachims [51, 52]. The accuracy of the supportoremachine part of speech tagger is
competitive with the rule based and HMM taggerdhwaittotal accuracy of 97.16% [70].
In addition, Marquez and Rodriquez developed asil@titree based part of speech
tagger [71] that also has performs well when comegdo the HMM and Brill rule based

taggers.

In addition, Chu and Shu develop a method usingiraktianguage analysis to

identify biomimetic functions and other cross-domearminology that can be used in the
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concept generation phase of a design effort in7[7R-Shu’s et al. efforts help identify
unique functional terms from biology text that wiklp designers create new ideas when
developing new systems. Shu et al.s, process dedban using WordNet [78] as a
keyword database to identify synonymous terms thaide across multiple domains.
Yang and Cutkosky in [79-82] also discuss using teking and data mining to develop
engineering design thesauri based on keywords fdesdjn text that can be used during
the concept generation process. Their method tsels such as singular value
decomposition to reduce the dimensionality of téreguency and document frequency
matrices so that the most popular words found etsic documents can be used later in
the design process. Futhermore, Li, et al.. in @8cuss developing computer-aided
tools to perform semantic processing of design testhg techniques such as latent

semantic indexing, ontology engineering and natarajuage processing.

Horvitz in [9] implements learning Bayesian netwstk model traffic congestion in
metropolitan areas. This leads to the predictibeuoprising events. Where surprising
events include sporting events, holidays, weatlmer @ther circumstances that lead to
traffic bottle necks . The research discussechis proposal covers the prediction of
surprising events in the area of transdisciplindegign and process science and will
review the use of learning Bayesian networks, reosaworks and support vector
machines to predict the occurrence of these eumsgsd on trends found in patent data.
In addition, Horvitz in [9] demonstrates the useneéchine learning techniques and
discusses training a learning Bayesian networkdayguapproximately 75% of data from

a metropolitan traffic database and then verifyimg model using the remaining 25% of
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the data from the database. This approach wiltdken to validate and verify the

predictive model used to develop a set of trangalisary metrics.

Trappey, et al. discuss using a neural networkédhiusing back propagation in [84]
to classify patents based on the internationalnpat&assification (IPC). In addition,
Trappey, et al.. Include an overview of several mrae learning methods such as Naive
Bayes, K-Nearest Neighbor, and the genetic algorittAs part of their analysis, it was
shown that the neural network back propagation mpedormed best when classifying
patents into different IPC categories. There rewmetwork achieved a test data
correlation coefficient of 0.90 which is a very goft for the classification model. In
addition, Fattori, et al.., [54] discuss using dem trees to classify patent current
awareness bulletins based on their information exdntFurthermore, Matthews in [85]
discusses building a machine-learning model usii@pgesian Belief Network so that
engineers can rapidly explore the design spacengwaproject. The model uses a new
information content metric developed by Matthewattls based on exemplary design
solutions of automobiles. In addition, Loh, et §5] discuss using multiple machine-
learning methods to classify patents into differeategories based on TRIZ inventive
principles [86, 87] used in the patents. In Lolaket. paper, several machine learning
methods are used such as k-nearest neighbor, a@edige, support vector machine
(SVM), and Naive Bayes to classify patents. Thiswswe package used to train the

classification models is WEKA [88].

WEKA is used in this research along with Matlab ][88 train regression and

classification models to predict the success of n#esigns based on a set of
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transdiscplinary metrics. Regression methodsused for data classification when
continuous dependent variables consisting of nuwrdaia are used as target data for a
machine learning model. Classification methods n@@inal target data as dependent
variables in the machine learning model. WEKA barused to train either regression or
classification models. [88] WEKA includes a numlgdr different classification and
regression methods. Figure 2-3 shows a screero$tioeé WEKA interface that provides
a list of Bayesian and functional machine learnmngdels that can be used for either

numeric or nominal classification of training amdget data.

|<] Weka Explorer - T eEre]]

| Preprocess| Classify | Cluster I Assaociate I Seleck attributes | \ﬂsualize|

Classifisr
) weka - 007 -T 0.0010-P 1.0E-12-M 0O
|2 1! dassifiers N
£k | bayes |
..... # ACDE I5* [NOrHallzZed) [amuse Z
----- # Bayeshlst jg * (normalized) Theat
----- # ComplementMaiveBayes 12 * (normalized) Tcomm
----- # MNaiveBayes 1& * (normalized) Tnue
----- # NaiveBayesMulkinomial * normalized) T10
----- # NaiveBayesSimple 1z
----- # NaiveBayesUpdateable
E-le Functions c|hel evaluations: 431056 (100 % cached)

----- # LeastMedSg

----- # LinearRegression
----- # Logistic

----- # MultilayerPerceptron
----- # PaceRegression

----- # REBFNetwork

build model: 10.%22 seconds

L on test split ===

E=

e

He @ - ® SMO |
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| U A # SimplelinearRegression error 0.2708
| A T # SimpleLogistic ared error 0.5183
----- # VotedPerceptron ~ |lute error £6.3889 %
mi o & Winnow squared error 116.86874 % =
B ) lazy pf Instances 233
G-l meta 7 || Unknowm Instances 2
‘ | n | 3
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Figure 2-3 WEKA Screenshot
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A number of articles have been written that discossing patent data to extract
relevant design information, its use in the concegpheration phase of product
development, and the creation of models of desigovation. Tan Runhua, et al. discuss
patent text mining in [90, 91] as part of an efftpursue computer aided innovation
similar to the work performed in this dissertatioNext, Chapter 3 includes an overview

of the theoretical contribution put forth as pdrtros research.

2.4 Latent Semantic Analysis

Latent semantic analysis is used widely by web-thasarch engines such as Google
to index webpage text to enable information retiesf web content. [82] Latent
semantic analysis is used to characterize a stw@fments, or corpus, by calculating the
frequency with which each term in a document appesrd then determining the
relevance of the term to a specific set of documenithis is accomplished by using the
term frequency —inverse document frequency (tf4déthod to index a set of documents
[82, 92]. Latent semantic analysis consists of fireating an m x n matrix that represents
the term frequency in the matrix rows and the daenimn the matrix columns. This
generates a tf-idf index matrix represented in mabrm by the following equations [82,

92]
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nI’J

nk’J

tf.

k
Where r; is the number of appearances of term tlocument gand the denominator
represents the total number of appearances ofeathst in the document. Inverse

document frequency is described by the equatioovbel

3
{d,:t, 1 d;}|

idf,; =log

Where |D| is the total number of documents includedthe corpus under
consideration and the denominator in the log equatonsists of the number of
documents in which the termdccurs.. This process gives rare terms more weaigihe
tf-idf matrix. Thus, the cross product of the tefraquency and inverse document

frequency yields the tf-idf matrix shown by the atjan below:

th-idf,, =tf, " idf

I j

Before creating the tf-idf matrix a number of texeparation techniques must be
employed. Two of the techniques employed as parthis research include first,
removing stop words from the text—frequently useatds likeand be becausgetc.—
and then using Porter's stemming algorithm to reenibe letters at the end of commonly

used words [93].

Once the tf-idf matrix is generated, the next stefatent semantic analysis consists
of reducing the number of dimensions in the matri reduce the number of matrix

dimensions techniques such as singular value deesitigm, or principal component
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analysis [94], and clustering techniques can bel usegenerate a smaller number of
uncorrelated variables in the matrix from the tadat of terms [40, 95, 96]. These
approaches group common terms usually accordingesynonymy of the words [97-

99]. Principal component analysis was chosen asnétbod to reduce dimensionality of
the matrix. Specifically Hotelling’s T which provides the variance of terms in the

matrix, was selected to rank terms based on thkitionship to a specific discipline.

33



Texas Tech University, Christopher M. Adams, Decen#®09

CHAPTER 3
THEORETICAL APPROACH FOR PREDICTING INVENTION

SUCCESS

This chapter includes an overview of three theocattapproaches developed as
part of the contribution of this dissertation. Thwst theoretical approach consists of
using computer aided methods to estimate metrm® fthe TRIZ. Degree of ideality
from TRIZ is estimated by using natural languagecpssing to extract functions and
physical attributes from patent text. In additidayel of invention is estimated by
building a machine learning model using artificiural networks based on patent
citation measures. Next a theoretical approacthddding a semantic functional basis of
design is discussed. Finally, an approach is dmssl for creating a set of
transdiscplinary metrics. These transdisciplinastrics are used in a machine learning

model to prediction the success of a new invention.

3.1 TRIZ Degree of Ideality and Level of Invention Es#tion

This section will discuss the theoretical appro&elestimate the value of two

TRIZ metrics, degree of ideality and level of intien.
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3.1.1 TRIZ Degree of Ideality Estimation

Patent component names and numbers can be coestrmca hierarchical list by
reviewing action verbs such as “comprise, form,ehanclude, mount, etc” that indicate
that certain components are subcomponents of atberponents [47] Figure 3-1

provides an example hierarchical component listragded by extracting the component

names and verbs using MontyLingua.

| 1 door
comprise mount mount include include attach mount
Y Y A 4 A 4 A 4 A 4 Y
Upper Door Door Recess Door Rubber Bumper
portion 2 jamb 12 shaft 13 28 frame 8 29 4
comprise
have thread
Steel Top | Recess 28 | | Socket 19 |
Gusset 10 steel
frame 9

Figure 3-1 Component Hierarchy for Patent #3,858 37

Once the hierarchical list of components is gerekad list of functions performed by
the design can be created for each hierarchical.leVhis can then be used to generate
patent functional models to review component antttion relationships that increase a

design’s benefit to cost ratio or degree of idgalit

The next section will discuss using computers torege the level of invention for a

patented design.
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3.1.2 TRIZ Level of Invention Estimation

A patent’s level of invention can be estimated bing patent citation analysis, patent
generality and originality measures [20] as indeleern variables in a supervised learning
model to classify patents into the five TRIZ levelsinvention. The steps involved in
using software to aid in the estimation of patesmtel of invention consist of first
estimating the level of invention manually for & gkpatents to use as training data for a
supervised learning model. Next, data from thadwal Bureau of Economics Research
(NBER) patent database is used as a training aataamsisting of data fields such as
number of citations made and number of citatiogikeed. In addition, the measures of
patent generality and originality from the NBERat#se is used in the training set. The
originality measure is calculated based on the rermobpatents cited by the patent under
analysis that are from different patent classebe easure of originality is calculated
using the following equation [20]:

0=1 (B

Where i is the patent under consideration, b isrthmber of patents cited, and k
indicates the subclass of the CITED patent as atddt in the NBER database. For
example if one patent cites 3 patents and 2 op#tents are from subclass X and 1 patent
is from subclass Y, then the originality measur#-i§(2/3f + (1/3f) = 0.44. A patent’s
generality is measured in a similar way, but comsidorward patent citations to different
patents from different subclasses. The measurgentrality is calculated using the

following equation [20]:

36



Texas Tech University, Christopher M. Adams, Decen#®09

g =1- | (%)2

k=1

Where f is the number of patents citing patenind & indicates the subclass of the
cited patent as indicated in the NBER databasealllyj citation information such as the
mean forward citation lag and mean backward citatay is also used as part of the
network training data. This data is used to deteenthe breadth of influence a patented

design has on future inventions.

Table 3-1 includes an example of the training dataused to classify patents by level
of invention. It includes the independent varialds well as dependent variable, level of
invention. This training data can be used with anber of different machine learning
techniques to perform data classification. The hrax learning technique used to
perform the classification in this example is thdifiaial neural network back
propagation algorithm supplied in MATLAB Neural Matrk Toolkit. (Other machine
learning techniques that can be used include stimgotor machines and Naive Bayes
Networks.) An artificial neural network is usedttain a classification model using an

expanded set of training data, similar to the eXartrpining data shown in Table 3-1

Table 3-1 is used to estimate the level of invenfar a large number of patents. The
patents were initially selected using the numbecitstions received as an indicator of
patent level of invention. Intuitively, it is exged that patents that receive a large
number of citations will be inventive and likely support many other inventions. In
addition, patents with a high forward to backwaitdton ratio were selected for review

to identify whether these patents have a high lef/@lvention. In addition, patents were
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only selected from the patents that fall in theegaty of mechanical designs.
Mechanical designs were selected to keep the neetalork from artificially selecting

patents from fields such as biotechnology that dii@m many diverse disciplines. It
was found that using patents from many diverseiglises skews the number of level

five patent estimates.
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Table 3-1 Example Training Data

patent [cmade|creceive|general| original| fwdaplag| bckgtlag [LOI
4387297 12 233 0.34f 0.72 12.52 6.67| 2
4575330 18 216 0.80] 0.69 8.05 9.72] 4
4251798 14 181 0.24] 0.64 14.09 571 2
4409470 30 178 0.30] 0.52 11.02 8.50] 2
5040715 18 160 0.49] 0.54 5.34 11.28] 2
4835834 19 151 0.66] 0.77 6.68 21.21] 2
4277837 12 144 0.77 0.71 9.42 558 2
4361060 31 142 0.71] 0.26 9.77 10.03] 3
4506387 9 128 0.79] 0.81 10.45 8.11 4
4834306 10 127 0.64] 0.66 5.32 21.40[ 2
4369361 13 126 0.25] 0.26 12.53 7.38] 2
4520817 16 121 0.28] 0.34 11.05 17.13] 2
4130095 3 121 0.69] 0.44 8.64 1.67] 3
4944443 16 118 0.66] 0.68 6.02 22.63[ 2
4807222 6 112 0.65( 0.67 7.45 3.83] 4
4728020 13 109 0.35 0.26 9.08 492 2
4127322 3 109 0.79] 0.50 15.47 9.67] 3
4236880 13 108 0.62] 0.66 11.87 13.15 3
4636346 24 104 0.64] 0.74 7.77 8.50] 3
4303904 5 87 0.80f 0.80 13.40 10.80] 5
4162397 4 53 0.79] 0.44 6.68 7.75] 3
4714144 17 16 0.58| 0.44 5.19 553 1
5265694 3 16 0.12] 0.44 1.94 0.67] 2
4074996 3 16 0.12| 0.44 11.88 11.33] 2
4656994 6 16 0.12| 0.44 11.88 33.83] 2
4717094 15 16 0.23] 0.44 7.19 3173 2
4646904 3 16 0.23] 0.44 7.94 2.00 1
4051924 3 16 0.23] 0.44 12.88 733 1
4385609 7 16 0.30] 0.44 3.88 6.29] 2
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The first patent dataset initially used to traie theural network model epresents a
larger number of mechanical and electrical pateh# biotechnology and chemical
patents. From reviewing the neural network resitiltgas found that biotechnology and
chemical patents typically have higher originaléyd generality scores than other
patents. Based on this result it was determinegs®only mechanical designs to train
the neural network. Future research will invegegahypothesis that patents that rely on
knowledge across many disciplines will result isigas with higher levels of invention.
This can be overcome by normalizing the data sefilipg biotechnology patents higher
generality, originality and citations made and reee¢ values based on the values for

these measures across many other disciplines.

Patents with a low number of citations made andh mgmber of citations received
may be based on a new technological discovery ithaates the evolution of novel
technological trends. Patents that receive a largmber of citations support the
evolutionary development of new technologies siadarge number of inventions result
from this novel concepts. Using this training data estimate level of invention,
information can also be used to understand trend$esign evolution and innovation.
This will aid in understanding whether TRIZ levdliovention is correlated with other
innovation metrics such as the emergence of a damhitkesign [19] and the evolution of
technological discontinuities [3]. The next sewctiacludes the theoretical approach for

developing a semantic functional basis of design.
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3.2 Semantic Functional Basis of Design

The next section includes an overview of usingrim@tion extraction techniques
to calculate the frequency of functional basis ekign terms. The frequency of
functional basis of design terms is used to creasemantic functional basis of design

that can be used early in the design process fozeq generation.

3.2.1 Functional Basis of Design Term Extraction and Frequency

To determine the frequency with which action vedrsdl objects appear in
mechanical design patents, an algorithm was writteévisual Basic to count the number
of appearances of each functional basis term. @medérequency of functional terms is
determined from the list of action verbs, the freqey of the functional terms from
Functional Basis of Design is analyzed. This isstaucted by generating a Pareto list of
function terms extracted from the patent descmsiand then mapping the term
frequencies to the functional terms from FunctioBakis of design.Table 3-2includes
an example functional term frequency report thatviges a short list of the function
terms extracted from the patent descriptions. f@bé& also includes the frequency with
which the function terms appear across 1,000 mecaladesign patent descriptions.
This table does not include all of the functiorerits extracted from the patents, but the
report indicates that the frequency is based oata bf 39032 occurrences of action

verbs extracted from the patent descriptions.
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Table 3-2 Patent Description Functional Term ParetdReport

VERB FREQUENCY |REPORT \
Verbs Extracted from file: |C\SAOALL\SAOALL 5.TXT
Filtered Verbs contained |in |FILTERED |VERB OCCURENCES |REPORT:
C\PATENTREPORTS\WVERBFREQ5.TXT

11/20/2008 8:58:04|PM

VERB: FREQUENCY: |PERCENT |OF 39032

provide 1703 4.36%

include 767 1.97%

illustrate 632 1.62%

extend 589 1.51%

connect 552 1.41%

make 528 1.35%

apply 509 1.30%

comprise 429 1.10%

position 395 1.01%

produce 389 1.00%

control 359 0.92%

indicate 327 0.84%

pass 307 0.79%

generate 294 0.75%

3.2.2 Data Representation and Analysis

Once the verb list is created by extracting vemosnfthe SAO phrases using

MontyLingua, unwanted terms are filtered, and fior@l term frequencies are counted,

it is necessary to group the functional terms ifactional classes.

To classify

functional terms into a hierarchy of functions Hgss (primary) functions, secondary

functions, and tertiary functions as performed bgn® and Wood in [4, 5], the functional

basis for mechanical systems is used as a templdte.functional basis for mechanical

designs is provided imable 3-3 This table is augmented with the term frequenéoe

each of the functional terms to the right of thediion text. The term frequency analysis

result is provided iTable 3-3
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Table 3-3 Mechanical Design Functional Basis Termrequencies

CLASS Secondary Tertiary
Term Frequency Term Frequency Term Frequency
Branch 0.01% Separate 0.20%
Divide 0.06%
Extract 0.04%
Remove 0.71%
Distribute 0.05%
Channel 0.04% Import 0.00%
Export 0.00%
Transfer 0.18%
Transport 0.04%
Transmit 0.35%
Guide 0.08%
Translate 0.05%
Rotate 0.73%
Allow DOF 0.00%
Connect 1.41% Couple 0.33%
Join 0.09%
Link 0.03%
Mix 0.11%
Control 0.92% Actuate 0.16%
Magnitude Regulate 0.06%
Increase 0.44%
Decrease 0.10%
Change 0.24%
Increment 0.01%
Decrement 0.00%
Shape 0.15%
Condition 0.03%
Stop 0.18%
Prevent 0.55%
Inhibit 0.04%
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CLASS Secondary Tertiary
Term Frequency Term Frequency Term Frequency

Convert 0.12%Convert 0.12%
Provision 0.00%Store 0.25%

Contain 0.51%

Collect 0.05%
Supply 0.30%
Signal 0.05%Sense 0.16%

Detect 0.150f)

Measure 0.15¢6
Indicate 0.84%

Track 0.10%

Display 0.04%
Process 0.13%
Support 0.70%stabilize 0.05%
Secure 0.66%
Position 1.01%

The next section will discuss the theoretical appho for creating a set of

transdisciplinary metrics to predict the successest inventions.

3.3 Transdisciplinary Knowledge Integration Measures

A novel approach was developed as part of thissd&ton research to establish a set of
measures used to evaluate designs based on theenoimfunctions and physical components
employed from many different disciplines. The agwh includes using natural language
processing techniques to extract functional andsighy terms used by different disciplines. In
addition, latent semantic analysis techniques susch-idf text indexing and Hotelling’s®Tare

employed to generate a list of key design termseforh discipline. Once key-term lists are
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generated, the lists are used to search new desigrio identify the use of the functional and
physical design terms. This creates a method nergée different measurements of the level of
transdisciplinary knowledge integration for a neesidn used as part of a predictive model for

understanding the breadth of impact a new inventidirhave on future inventions.

The transdisciplinary knowledge integration metrites/eloped as part of this research
consist of first measuring the frequency of funatib and physical terms used within one
discipline for a set of n disciplines, then measgithe use of functional and physical terms used
within two disciplines for a set of n disciplinethen within three disciplines for a set of n
disciplines until the interaction of functionalignd components across multiple disciplines is
completely characterized for a total of n disciprunder study. This provides n measurements
that can be used to characterize the transdisaijtin of a design or process. The first
transdisciplinary knowledge integration measurlalieled by the term T T, is constructed by
calculating the frequency of functional and phyktesms that occur within one discipline for
each of the n disciplines under study and then ureathe integration of knowledge from

multiple disciplines employed within a new invemtio

The next transdisciplinary measuré, Tneasures the use of functions and physical
components that span two disciplines within a $et disciplines. This measure calculates the
number of functional or component terms that residthin two disciplines out of n disciplines.
The measure “Tis a second measure tg ahd considers the transdisciplinary knowledgediegi
within two disciplines for a set of n disciplinethere T, considers knowledge that resides only

within one discipline.

The measure for?Tcan then be repeated to createg,an€asure that represents the terms

that span across p disciplines, where p is less thaThe | measure is calculated in the same
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way as T, but takes into account p out of a total of n iiiwes. T, is another measure that
considers only functional and physical term trassigilinary knowledge and does not focus on
knowledge that resides with a specific discipliriefollows that as p is greater than half of re th
measure is a stronger term transdisciplinary meaan disciplinary measure and when p is less
than half of n the measure is thought of as a ndiseiplinary measure than term measure.
Therefore, the lower the transdisciplinary indextitd measure the better the measure estimates

the level of transdisciplinary knowledge integratmf a new invention.

Another set of measures were created to measuffeetipgency of physical and function
terms from each of the n disciplines. These measare labeled J where k represents the
discipline understudy, and,Ts the frequency of the terms from a given disagl This allows
for the measurement of the number of functions emhponents that reside within only one
discipline. In addition, an interdisciplinary metiand transdisciplinary metric were created to
measure the interdisciplinarity and transdiscipiiyaof the overall invention. Key functional and
physical terms from each discipline are used tosmesT, through T, for a large set of patent
documents. The transdisciplinary measures are tised with other patent measures such as
number of citations made to other patents, patawkward importance measure, and patent
originality measure from the NBER database [20}&am a machine learning model to predict the
breadth of impact a patent has on later inventioased on its measures of transdisciplinary
knowledge integration. Figure 3-2 includes a fldragram of the inputs and target variables used
in the machine learning model. The inputs and targég the machine learning model are
explained further in this section. The machinagri@gsy model [100, 101] selected to predict a
patents breadth of impact is the neural network h@mopagation method. Once the machine

learning model is developed it is tested againethaar set of patent data to validate this approach
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Input Variables

*Term transdisciplinary
measures based on
functionality and physical
attributes

eInterdisciplinary measures
based on functional and
physical attributes

*Transdisciplinary measures
based on functional and
physical attributes

*Design originality (includes
the breadth of citations
made, number of
technological categories,
and the time distribution of
citations made).

«Citations made (provides
economic impact of the
design or product)

*Backward patent
importance (provides
economic impact of the
design or product)

Machine Learning
Technique

*Neural network
back propagation

Target Variables

<Design generality
(includes the
breadth of forward
citations received
and number of
technological
categories

Total citations
received by a patent

*Forward
importance (scores
for patents that are
cited, going
forwards in
generations).

Figure 3-2 Input and target variable flow diagram
USPTO patent documents provide a good represemtafi@ design that includes the
functions performed by the design as well as therpgad design’s components. USPTO patent
documents must follow a set of rules that defines leopatent document is constructed [102].
This includes identifying sections for a patentwment such as patent title, abstract, claims, and
patent description. Each of the patent documettioges includes useful information that can be
used to extract the functional representation fachepatented invention. To extract patent

functional descriptions from patent text it is nesay to employ natural language processing
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(NLP), information extraction and information retral techniques. This is conducted by
extracting the action verbs and objects appligohitents that represent the functions employed by

the patented design.

Natural language processors are used to extracBubgect Action and Object (SAO)
from each sentence in a patent’s textual descnpthm SAO is defined as subject, action verb
and object of a sentence included in a body of. tAst part of this work the NLP software
MontyLingua [62] implemented in Python was seledieextract all of the SAO instances that
reside in each sentence included a patent's textestription. Once the SAO instances are
extracted Latent Semantic Analysis [82, 92, 103]J9ed to generate a term frequency — inverse
document frequency matrix that serves as an inféxrms for a corpus of patent documents that

resides in a given discipline.

The USPTO currently uses a method for identifyirdepts that includes 400 unique
patent classes. [20] This consists of 36 subcaegof patents and 6 higher level categories of
patents. The six categories of patents includencda, computers and communications, drugs
and medical, electrical and electronics, mecharindlother. To establish a list of key functional
and physical design terms used by different diswgl patent text was selected for 100 patent
documents from the 1970s, 100 documents from ti8®4@nd 100 documents form the 1990s

that fell within the different categories and sulegaries defined in the NBER database.

3.3.1 Transdisciplinary Term Measure Calculation

In order to measure the transdisciplinary integratevel of a new design based
on the text used to describe it, it is necessarfyrs$o gather information from historical
data to measure the frequency of which terms appetnin different documents

classified for a given discipline and across docusighat represent many different
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disciplines. To solve this task, latent semantialgsis is employed to generate a list of
terms that appear frequently within a set of patErduments that fit within ten different

disciplines. Latent semantic analysis consistdirst creating an m x n matrix that

represents the documents under analysis. Thigsterd creating a matrix where terms
that appear in the documents are the rows in thexyand the patent documents under
consideration make up the columns in the matrix.

After constructing the tf-idf matrix we must detene which terms contribute the
most to the variance of the matrix. This is acclishpd by using principal component
analysis to reduce the number of matrix dimensams create a number of uncorrelated
variables that represent many related terms instéading a matrix with a large number
of variables that represent many correlated terisother method that can be used to
determine what terms contribute the most to matixability is the use of Hotelling’s T-
Square (T) method. Hotelling’s ¥method identifies terms that contribute the mogt-t
idf matrix variability. Hotelling’s T score identifies terms that are farthest away from

the matrix mean. Hotelling’s?Tis given by the following equation:

T2=n(x- M*W?i(x np
Where n is the number of points (the number of seimthe tf-idf matrix), x is a
column vector of n elements (x is a vector represgnterms that reside in each
document ), u represents the mean tf-idf frequendie tf-idf matrix, and Wisan x n
sample covariance matrix (covariance matrix oftthéf matrix).
After determining which terms are the most disfamin the mean, Hotelling’s T

is used as a measure to rank the terms that ajspeach discipline. Once Hotelling’$ T
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function is employed using Matlab to analyze th€ iatrix for each patent, then thé T
estimate for each term is exported into a .csv &rmEach term is then ranked by its
associated Tmeasure to create an ordered list of terms by itapoe. A ranked list of
terms for each discipline is then created by sgrthe list of terms extracted from the
latent semantic analysis in descending order basedts associated “Tscore. Ten
disciplines were studied as part of data analysikided in this dissertation based on the
work by Jaffe in [20]. The ten disciplines studiedthe analysis include chemical,
computers and communications, electrical, measuaimgj testing, nuclear and x-rays,
mechanical, heating, amusement devices, biotecgpanod other. A sample of the term

list for each discipline is provided irable 3-4
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Table 3-4 Example list of disciplinary terms

Amusement Computers & Nuclear & X- | Measuring &
Devices Heating Communication rays Testing Biotechnology Chemical Electrical Mechanical Oth er

speric comprtment sfp mqw zero-quantum Jphenoxyacetyl bmf misfet sub-convey ti-zr
putter ptc pmgr radon loop-gap replicat urea-sulfur igfet airbag sub-bodi
jackpot setback svd piezo-actu counterpropag |cftr dmc non-barri helicoid seizur
lotto burning-out mbc pyro-opt fid hpv photometri vapor-grown coiler weigher
turtl precalcin atm micro-dr piezoresist amyloid polyanhydroaspart |epitaxial fan-fold non-stick
honey-gath heat-convei itinerari slit-rai electrodeform |cryoprotect hydrocrack hi-c signpost after-touch
outwardli fin vlan photo-luminesc |corioli angiogenin cha loco sunshad truss
puzzl slump ethernet electrosprai microbridg extracapillari peroxyacid non-singl extruderhead superthin
hockei circulating-air palm-top probe-carri liquid-level integu contrast-enhanc spin-on-glass tilted-up percuss
moebiu photoflash workspac markabl motion-encod |[cea photochrom polyoxid treadmil oxide-bas
playfield fluid-distribut unipost near-ir grase hind catam light-activ force-resist parapet
jigsaw overtemperatur  |multicast secular flow-encod transgen micro-fibers-gener |quantum-wel uat scrapper
goaltend fireplac snoop light-detect Ifzp a-factor fluoroaliphat Ipd underscor cryopanel
three-piec swirler timelin shear-forc bondpad unstain ga-treat teo electro-conduct Jaluminid
pinbal air-suppli vCi fov magnetoelast |amebocyt nematogen ig-fet unton cymbal
audiotex high-calori subscrib focussing-error |dient telomeras electrograin tiw tread cementiti
racket blowoff simm thermosprai phase-encod |stromal azeotrope-lik split-gat prepressur intumesc
doll windbox hash fclum unsoak cdna photocatalyt anti-punchthrough |sac earth-lik
hitter checkerwork bsr megavoltag borehold dt-a light-respons graphoil ni-ti dockboard
headfram spear keyword sub-area bragg-typ tissue-deriv expuls in-process control-pressur  Jtex
footbal lement edo ontain mansfield biomass bronst tiwn arch-shap plasma-deposit
poker vac over-eras ftr proofmass keratinocyt photoharden punchthrough glasslik volut
prize-win heatpip broker constrast rlg spermatozoon hydroconvers ode doser congel
dealer raft vsync lessend lightpip cmcase steel-mad p-conduct lockr roll
allei desalt parser visabl bjt aav diboride-bas conductivity-impart |derailleur self-set
pressureless |high-tens pen-bas cho coastdown plasmid radiation-block phospho-sil reinforcing-fram |propylene-ethylen
prize-award stagnat raid Iwir gradient-coil  [limulu raffin macro pacemak shoeboard
basketbal firebox full-writ effect-induc rason carolina projection-typ virtual-ground skateboard splint
sub-cub kiln-typ telesketch nsom sfm ionen photobleach pre-stag fixer hrj
gondola otari directori quistor compatritor synthas tle rapd aramid-epoxi colour-form
coin pulverized-coal-fir |pram field-sensit two-port mab tert-butyl defect-caus reaction-pl awn
card-edg tramp midi mid-infrar y-ax nrrl clau mesfet heat-solubl self-flux
skittl after-burn cd-i g-piezoelectr memor myeloma light-modul reguenc eec rosari
pre-chosen silo mccam grin rephas hemicellulas octafin isoplanar sidepl asm
keno-gam atc dct tubehead exor plasmin tact non-ldd smif load-sens
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The list of terms included imable 3-4does not represent the complete list of discipjina
terms. The analysis generated the following nunolbéerms for each discipline:

Amusement Devices = 5936 terms

Heating = 5166 terms

Computers and Communications = 8937 terms

Nuclear and X-rays = 7185 terms

Measuring and testing = 6512 terms

Biotechnology = 12979 terms

Chemical = 9857 terms

Electrical = 4269 terms

Mechanical = 6268 terms

Other = 8229 terms
To develop a set of transdisciplinary knowledgegnation metrics, term transdisciplinarity
is measured using Hotelling’s®Tto rank the terms extracted from a set of patents
representing a given discipline. First, termselisin the tf-idf matrix for each discipline are
ranked in descending order using thfes€ore. The data analysis considered in this paper
uses ten disciplines.

The next step in the process is to create a matrterms for each discipline where
the rows in the matrix represent terms in the tfrnéhtrix for one of the n disciplines used for
the measurement. The columns in the matrix reptebendisciplines under study. The data
in the matrix represents the’ Bcore for each term where the first column in miatrix
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includes the discipline from which the term listsmextracted and the? Bcore terms ranked
in descending order. The data in the other coluimeisides the T score for terms that are
found within the other disciplines under studyable 3-5includes an example matrix for one

of the disciplines used for the data analysis dised in this dissertation.
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Table 3-5 Hotelling's T-Squared Matrix for Each Digipline

BIO TSQ BIOin Chem Bioin Elec Bioin Mech Chem TSQ CheminBio Chemin Elec Chem in Mech Elec TSQ ElecinBio Elecin Chem Elecin Mech Mech TSQ MechinBio Mechin Chem Mech in Elec
polynucleotid 11679 2777 bmf 8460 diamond 3907 5425 4316 bobbin 5845
bibul 11377 103 urea-sulfur 8395 film 3895 788 3453 1621 grind 5681 806 175
trident 10844 modul 8281 549 2791 1732 sub-lay 3811 366 ply 5577 58
cassett 10680 9 760 dmc 8000 pre-charg 3782 15 screen 5457 1015 2054 748
zone 10623 2269 2802 1027 silver 7960 582 134 40 storag 3749 1031 1177 1339 code 5436 1540 49 67
compart 10431 4969 964 label 7722 3903 68 890 polyimid 3696 34 2003 511 exercis 5322 24
cellulas 10404 9 crystal 7688 1299 2237 emiss 3633 4552 262 2024 turbin 5283 29 2692
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Next, the matrices are used to measure the tramgliigary level for each term. If a
term appears in only one of the disciplinary terstslthen it contains no transdisciplinary
knowledge and receives a transdisciplinary termsmesof 0%. If a term appears in 2 to n
disciplines, then it receives a percent transdis@py measure that is estimated based on the
T2 score for the term. The transdisciplinary meagare specific term is estimated using

the following equation:

Where § is the term transdisciplinary measure, d is tiseidline that includes the term and
T4 is Hotelling’s T score extracted for a specific term from disciplihe

The term transdisciplinary measure can then be tgsedaluate terms extracted from
the patent list. Terms with a transdisciplinaryasure of O are considered disciplinary terms
and are included in the list of terms associatat wispecific discipline. The lists are ranked

in order first using td and then the teTiscore to perform the ranking.

3.3.2 Transdisciplinary Knowledge Integration Measurement

To measure levels of transdisciplinary knowleddegration, the first step consists of
extracting the text from the design descriptionwionent for the design under study. Stop
words must be filtered from the text, then Portstesmmer algorithm should be applied, and
then the frequency of each term in the documectlisulated. Terms in the design document

are then compared to the list of terms extracteohfpatent data and a set of transdisciplinary
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measures are calculated to measure the transdiseipt of a given patent. First, measure of
the interdisciplinarity, Tof a patent is calculated using terms extractethfthe document

with ty = 0%. The following equation provides the methodcalculate Tusing the term

frequency of terms wherg £0:

Where n = the number of disciplines under studg.d term with td =0%, m = the
number of terms in discipline d with £ 0%, d = the number of disciplines used to measur

transdisciplinarity andf is the term frequency for a given term t.

Next, T4 is constructed to measure the contribution of sewith § > 0% that reside

within all of the disciplines under study. Thist ® measures is given by the following

equation:

In this equation d represents the number of dismplunder study, r represents the
terms with § > 0% that reside in all disciplines d, | = thealatumber of terms that reside in

all disciplines d, antf = the frequency of which the term r appears witdirdisciplines.
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Furthermore, a set of measures are generateddtiaaée the contribution of terms with=
0% that reside within each of the disciplines urstedy. This set of measures is given by

the following equation:

In this equation x represents the discipline urddedy, t represents the terms wigh t
= 0%, m = the total number of terms with td = 0%g & = the frequency of which the term t
appears within discipline x.

Another set of measures are estimated that comstiiue disciplinary composition of
the invention. This set of measures reviews thregueage of the invention that is mono-
disciplinary, bi-disciplinary, tri-disciplinary, et These measures are estimated by summing
the term frequencies for terms that appear in aseigline, in two disciplines, in three
disciplines, etc, then dividing by the total freqag of terms that reside in a discipline until
all of the d disciplines are characterized. FiggH&includes 22 transdisciplinary metrics, T
Td, Tmech Telea Tchem Thios Tothen Tamuse Theas Tcomm Thue Tmeas T1, T2, Tz, Ta, Ts, Ts, T7, Ts,
Ty, T1o. This set of transdisciplinary metrics is usedrépresent the cross-disciplinary
interaction at all levels of transdisciplinary krledge integration. It includes
interdisciplinary interaction, mono-disciplinary témaction and multiple levels of

transdisciplinary knowledge integration.
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Figure 3-3 Graphical Representation of Transdisciphary Knowledge Integration Metrics
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The next section will discuss the software impletadrto extract functional and physical
descriptions from patent text. This includes arreiew of the patent software toolkit used
to extract patent information, perform natural laage processing by incorporating

MontyLingua, and perform latent semantic analy$igatent text.
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CHAPTER 4

IMPLEMENTATION

4.1 Implementation of TRIZ Degree of Ideality and Lew&lnvention Estimation

TRIZ degree of ideality estimates were performedgisatural language processing and
machine learning techniques. The next sectiondigituss how TRIZ metric estimation was

implemented in software.

4.1.1 TRIZ Degree of Ideality Estimation

USPTO patent documents provide a good representafi@a design that includes the
functions performed by the design as well as themtad design’s components. USPTO
patent documents must follow a structured set lafsrthat define how a patent document is
constructed. [102] Patent document rules desdifiberent sections that must be included in
the text of a patent including the patent titlestadict, claims, and patent description. Each of
the patent document sections includes useful irdition. The patent description section can
be used to build functional hierarchical models dopatented invention. To extract patent
functional and physical component information frgmatent textual descriptions, it is
necessary to employ Natural Language Processin®)dchniques [47]. Each patent in the
USPTO patent database includes drawings that depiciumbered list of all of the
components of the patented design. A list of gapdrysical components may be used to

create hierarchical functional and physical modefs a patented design. This is
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accomplished by first extracting Subject Action &tj (SAO) phrases from patent text
including the title, abstract, claims, and desaniptto retrieve each component name and
number residing in the patent as well as the acterb and object that reflects the function

performed by the physical components.

A number of open source Natural Language Processers reviewed to perform the
extraction of Subject Action and Objects (SAO) frdite sentences in patent textual
descriptions [62, 63, 66-68]. As part of this s the NLP software MontyLingua [62]
implemented in Python was selected to perform th® &xtraction. Specialized software,
the Patent SW Toolkit, was generated in the VidB@asic programming environment to
extract patent information from the USPTO.gov websi The patent software toolkit
graphical user interfaces are provided in Appendlibof this dissertation. This includes
example screenshots of the software as well as @eamatputs that result form analyzing the
patent documents. This software is used in the glateessing phase to extract patent textual
descriptions in HTML format. In addition, the Patt&SW Toolkit is used to convert patent
textual descriptions previously extracted in HTMirrhat into tagged XML. Tagged XML
is created by the Patent SW Toolkit to label andregate the patent text so that the
MontyLingua NLP software [62] can be implementeddiffierent sections. An example of

the XML report is provided below:
<?xml version="1.0" ?>
- <patentdata>

<patentnumber>3858357</patentnumber>
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<Patent_Title>BUMPER MOUNTING FOR FLEXIBLE TRAFEI

DOOR</Patent_Title>

<Abstract>A door having intermediate the endsdbe...

...said bumpers.</Abstract>

<Inventors>McGuire; Winston B. (Plattsburgh, N¥jwentors>

<Assignee>W. B. McGuire Co., Inc. (Hudson, NY)s&ignee>

<Filed_date>June 5, 1973</Filed_date>

<Current_US_Class>49/460 ; 16/86R; 160/354</CuridS_Class>

<Field_of_Search>49/460,9,34 160/354 16/86R,86B,8,111R,DIG.2 293/62 85/45

29/526 42/74</Field_of Search>

- <Citations_made>

- <citations>

<citation>3091818 June 1963 Clark</citation>

</citations>

</Citations_made>

<Claims>| claim: 1. A door having intermediate ethends thereof a pair

...Description</Claims>
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<Description>The present invention relates tordgaarticularly flexible traffic doors...

</Description>

Once XML reports are generated, the MontyLingua NbRware is used to extract the
SAO instances from the different sections of theepiatext. Next, an algorithm is employed
in the Patent SW Toolkit to extract component nalmethe component numbers that appear
in the SAO instances that are extracted by Montyua from patent textual descriptions.
MontyLingua provides an SAO report that includes werb, subject, and objects that appear
in each line of the patent text. It does not idelsubordinate clauses. As part of the subject
and object extraction, each component from thenpaten be extracted by looking for the
component number and name in the subject and oinjeedch SAO instance. This can be

used to generate a list of components for eacinpate

Once the component list is generated, list of fiemst performed by the components can
be generated by extracting functions that appeaaich SAO that includes a component
name and number in the subject or object. Thewvellg provides an example of an SAO

extraction from MontyLingua:
['‘comprise’, 'door 1', ‘clear plastics upper porj
['form’, ‘which portion 2 and 3 are', 'at bumpér 4'
['have’, 'their close position’, ‘overlap 6']

['close’, ", 'by magnet assembly 7']
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['include’, 'door 1', 'door frame 8']

['‘comprise’, 'door frame 8', 'top steel frames®&el gusset 10

['bolt', 'which', 'to upper and lower portion 2 &8id'by bolt]

['5', 'bolt]

['mount’, 'door 1', 'on door jamb 12', 'by doorfsi&', 'to which shaft 13']
['bolt', 'frame 11, 'by bolt 14']

['reinforce’, ", 'rubber seal 15

['extend’, rubber seal 15', 'between longitudedde’, 'of side steel frame 11']

The terms shown in single quotes represent thelf’vésubject’, 'object’, ‘object’]

extracted from each sentence using MontyLingua.

The process of estimating a patent’'s degree oflitges conducted by first using
software to automatically generate functional amgsgcal models. Patent functional and
physical models are generated with the use of p&teh mining and information extraction
techniques. This is accomplished by generatingtaof components for each patent and
modeling the functions performed by each patentpmment. A patent component is a
physical feature, part of the system, or combimatibphysical parts that are used to satisfy a
function fulfilled by the patented invention. Fuioctal modeling is performed by extracting
subject action object relationships for each coneporwith the use of natural language

processing techniques to perform part of speechirigg[64-66] of patent text. Patent
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functions and components are used to estimate tpdegree of ideality by dividing the
number of functions by the number of componentsidtermine a patent’'s benefit to cost

ratio at each functional and physical hierarchieagl.

The next section includes the approach estimahiadavel of invention of new designs.

4.1.2 TRIZ Level of Invention Estimation

To estimate the level of invention of new designsas necessary to build a training data
set based on inventions with know level of invenmtiestimates. A matrix data set of 43
patents was used to train the neural network baoipggation model using Matlab to
estimate the level of invention for a set of 48,3fients. 23% of the patents in the data
represent level one inventions, 51% of the dataessmts level two, 14% level three, 7%
level four and 5% for level five. To train the malnetwork the data set was broken up into
a training set that consists of 80% of the datealalation set representing 10% of the data
and another 10% of the data to test the networkopeance. The data set is split into
different data sets automatically. The trainingadset is used to train the neural network
model, the validation set is used in Matlab todete training and the test data set is used to
test the results of the model. The network wadt lmsing 100 hidden neurons to train the
inputs to the targets. The inputs to the netwaresent the number of citations made,
citations received, patent generality, patent aetily, mean forward citation time lag and
mean backward citation time lag for each patenhe Target data represents the estimated
level of invention for each patent. The levelmfention data was prepared by reviewing the

data set manually to make an initial estimate wéll®f invention for each patent.
65



Texas Tech University, Christopher M. Adams, Decen#®09

4.2 Implementation of Semantic Functional Basis of Desi

A semantic functional basis of design was consédicby using natural language
processing and latent semantic analysis to crelst af disciplinary terms for ten different
disciplines. The ten disciplines used to creasemantic functional basis of design were
chosen based on the patent categories in the NBiEg#htpdatabase. The disciplines include
amusement devices, communications and computeratinge mechanical, electrical,
chemical, biotechnology, nuclear & X-rays, measyrand testing, and other. The next
section includes an overview of the software immatad to complete this task. First NLP is
performed on patent text using MontyLinqua to aealist of SAO instances. Next LSA is
applied to the list of SAOs using the patent SW IKibdo measure term frequencies and
document frequencies for all terms. Finally, Matia used to rank terms based on the

variance of the terms to the mean of the docunrequency matrix.

4.3 Implementation of Transdisciplinary Knowledge Integpn Measures in Software

This section includes an overview of the softwadhidecture employed to perform NLP and
LSA to extract textual information from patents noeasure multiple levels of transdisciplinary
knowledge integration of a new design or inventidm.addition, the software architecture discussed
in this section is employed to generate a listhofgical and functional terms used to representvengi
discipline. The list of physical and functional ex for different disciplines can be used in the
concept generation phase by designers to helpdseréhe success of their design concept by
promoting the use of cross-disciplinary approact®sithesize functions, create function-based

representations, and develop function structuneadw designs and inventions [104-108].
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In this section a summary of the methods used ppat the claims of this dissertation is
provided. This includes an overview of data cditet and preprocessing of patent data from the
USPTO.gov website. In addition, the section diseasthe conversion of USPTO.gov patent data
from html format to XML format to facilitate extraion of patent functional descriptions.
Furthermore, this section also includes an overawéNLP software modules employed by the Patent
SW Toolset to extract action verbs, the subjectfopming the action, and the objects of the action
representing a system function from patent tekisally, the implementation of LSA is discussed to
calculate term frequency metrics and to build adfgkey physical and functional terms that repntse
a set of ten unique disciplines. Figure 4-1 inelidn overview of the Patent SW Toolkit functional

architecture.

Generate a list of Extract patent text Create tf-idf matrix Perform Principal
USPTO patent information in html using all patents in R Comp_onen_ts
numbers for a " format from a disciplinary Analysis using

specific discipline. USPTO.gov website corpus. MatLap PCA

2 function.
Start !
Reformat Patent html Create term Use Hotelling’s T?
source dafa into frequency list for to rank terms in
tagged XML structured each patent each discipline.
data for each patent. 2
A Filter Stop Words
Extract SAO instances and perform term Generate term
from descriptions stemming using transdisciplinary
using MontyLingua Porter's Stemming metrics.
Algorithm
Use tral_ned model Train Neural Count C|tat_|ons made Use term
to predict breadth - and received and eninli
) Network using back . transdisciplinary
of impact and ] ropagation in | forward and backward metrics to measure
importance of new P FI)\/Igtlab importance using Visual new patents
designs. Basic Software. P

End

Figure 4-1 Patent SW Toolkit Functional Architecture
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A graphical user interface was constructed to weweach step in the patent data analysis
process performed by the Patent SW Toolkit. Tlaplgical user interface allows the user to select a
list of patents by patent number to download ratemtadata in HTML format. In addition, the
interface enables the user to create XML and tiéed from the html data. Once the XML data is
generated, the user interface enables the usetect she patent data files that will be analyzedhe
MontyLingua NLP engine [62] to extract Subject ActiObject instances and save them in list format
in the form of text files. Once SAO text files aneated, the user can then calculate function term
frequencies from the list of SAOs in each patemt.eXample of the Patent SW Toolkit graphical user

interface is provided in Figure 4-2.
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Figure 4-2 Patent SW Toolkit Graphical User Interfece
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Figure 4-2 includes a screen capture of the repiodows provided by the Patent SW Toolkit used to
review XML data files generated by the tool, pat@es in text format, Subject Action Objects
extracted using MontyLingua in list format, andsa bf the function term frequencies extracted from

the patent text.

4.3.1 Natural Language Processing of Patent Data

Natural language processing of patent data is aglisined using the MontyLingua NLP
software written in Python [62]. The MontyLingud.R software provides functionality to read a
body of text. MontyLingua provides several typégext summarization and information extraction
algorithms. The MontyLingua algorithm used to egtrsubject-action-objects from a sentence is the
MontyLingua JIST function, which extracts the veshbject, first object and second object from each
sentence. Monty Lingua JIST function is applieceémh sentence in each patent description. Only
300 patents were chosen from each discipline falyars at this time because this data set will
provide a good statistical sample set that canxpareled to all patents. Once the verb, subject,
object-1, object-2 is extracted from the patentdpsons, it is possible to separate the actiorbsge
subjects, and objects from each SAO component phréike action verbs are the part of the sentence
that represents the functions employed by the nmecaladesign described by each patent, and the
subjects and objects represent the physical desigiponents. Once the list of verbs is extractesl, t
list of verbs is then reduced by removing unwargeap words from the list. In addition, term
stemming is applied using Porter's stemming albarit[109] The following represents a subset of

the stop words that are filtered from each setabémt terms:
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a, about, above, across, after, afterwards, again,be, became, because, become,
becomes, becoming, been, before, beforehand, hddgindy, ....can, cannot, cant,

co, con,... except, few, fifteen, fifty, fill, fifide, first, five, for, former, formerly,

forty, found, four, from,... put, rather, re, samee sseem, seemed, seeming, seems,

serious, several, she, should, show,... yet, you, yours, yourself, yourselves...

The next section will discuss software used togrerfLatent Semantic Analysis using principal

components analysis to develop a list of key dis@py terms.

4.3.2 Latent Semantic Analysis Software

Software was created to generate a tf-idf matritpwiin comma-separated value (csv) file
format in order to easily import the software iMatlab to analyze the tf-idf matrix using principal
component analysis. Figure 4-3 presents the tkaffware graphical user interface. The tf-idf
software allows the user to download patents in HTirmat from the web. In addition, the
software filters HTML tags and other non-value atldields from the text. The software then
enables the user to construct a list of stop warditer from the text and applies Porter’'s stemgni
algorithm. [109] Finally, functionality is providddr constructing the term frequency matrix anchthe
calculating the inverse document frequency matfnce the tf-idf matrix is constructed, the Matlab
principal component analysis function is used talyre the matrix. The results are exported in .csv
format to use in constructing the disciplinary tdists. The disciplinary term lists are then used
measure new inventions based on the functionapamgdical terms included in the description of the

invention.
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Figure 4-3 tf-idf software graphical user interface
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Next, transdisciplinary metrics are employed tantieaneural network model that is used
to predict the breadth of impact and the important@ new invention. The next section

includes results of employing machine learning n®t® predict design success.
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CHAPTER 5

RESULTS

5.1 Results of TRIZ Degree of Ideality and Level of émiion Estimation

The next section includes the results of estimatimggdegree of ideality for a set of
patents. Two example patents are provided foudson of the degree of ideality estimation

results.

5.1.1 TRIZ Degree of Ideality Estimation

For patent number 3,858,357 the degree of ideality estimated to quantify the patented
design’s value. First, a list of components wasegated using the method discussed in the
previous section. Next, a list of functions iseamsbled by identifying function terms that
reveal actions performed by components that reptesbjects in an SAO phrase or that act
on components that represent objects in the san@® [@kase. If no subject or objects exist,
then the SAO phrase is not considered in the fistoomponents. Using this approach the

following list of components was extracted for pet®,858,357:

1 Doors, 2 upper portion, 3 lower portion, 4 bunspes bolts, 6 overlap, 7 magnet
assembly, 8 door frame, 9 top steel frame, 10 giesdet, 11 side steel frame, 12 door jamb,

13 door shaft, 14 bolts, 15 rubber seal, 16 hedder jamb, 17 hinge, 18 bolts, 19 threaded
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socket, 20 bolts, 21 threaded sockets, 22 V-cdiowier, 24 recesses, 25 compression

spring, 26 washer, 27 collar, 28 recess, 29 rubber

This list provides approximately 29 componentstfos design that represents a mount
for a rubber bumper to be attached to a door. Sdie function of the bumper mount is to
allow the door to enable impact on the bumper. sThnction can be extracted from the
patent text by listing all SAO phrases that incluie door component name and then
filtering out SAOs that do not include typical activerb terms. Once all action verbs are
filtered by parsing the text and removing text ottiean the first term listed in single quotes
it is possible to see that the only door functioattremains is [‘allow’, ‘door’, 'for impact’, ‘on
door', 'by goods'] which represents the componéoor’ which allows for impact on door.
(Note: Multiple objects are provided by Montylingaa part of the SAO phrase.) Other
subfunctions can be found at lower subcomponergideafter SAO filtering. Functions
found at subcomponent levels include thread bunfpemn bumper, extend side steel frame,
bolt door jamb, mount door shaft, attach V-camdwitr, extend bolt, receive bolt, extend
side steel frame, rise hinge, accommodate bolt,cantpress spring. This represents a total
of ~12 sub functions and one primary componenttianc By counting the subcomponents
and subfunctions of the design, it is possiblestineate the degree of ideality of this system
by taking the ratio of patent functions to compdseriThis yields a ration of 13 functions to

29 components and a degree of ideality for thisqtad design of 45%.
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This metric can be used to quantify designs thavide a high level of value within a
specific patent technical category. It can be wme@art of the concept generation process to
review designs that have a high degree of ideahty use these designs as a benchmark early
in the design process. The next section will disausing computers to estimate the level of

invention for a patented design.

5.1.2 TRIZ Level of Invention Estimation

Figure 5-1 provides the regression performancéetraining data to the neural network.

Figure 5-1 Neural Network Performance Data

The figure portrays how the outputs of the neuediwork model, shown on the Y axis in
the Figure 2 fit the target level of invention dateown on the X axis. The network fits the

data well with a regression coefficient of 98.4%his shows the network performs well
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based on the training data input against the lelvgivention target data. The neural network
is then saved to the workspace to use to estinm&tdetvel of invention for a new set of

patents. This new set of patents was selected) ubm NBER patent database by first
gathering patents from the category of mechaniedighs. These patents were then
narrowed to patents that have a minimum of ondieitamade, one citation received, a
measure of patent generality and patent originatitthe NBER database. The input data
was then run through the neural network to clas48y986 patents into the five levels of
invention. Figure 5-2 provides a summary of tha&iah network training results from

applying the network to 48,986 patents. In additistatistics from classical TRIZ research

are included for comparison to the level of inventestimates.

50%
33?;0 o Classical TRIZ Statistics
0
o 35% | Initial network training result
% 30% +—
5 25% |
2 20% +—
< 15% +—
10% +—
5% +—
0% |—-_
1 2 3 4 5
TRIZ Level of Invention

Figure 5-2 TRIZ Level of Invention Statistics
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The initial network results show more patents dlestk as level one than the classical
TRIZ research. In addition, the estimate showsefepatents classified as level two, close to
the same number of patents for level three andnfane patents estimated as level four and
five. The neural network classification resultsrfibre closely with the distribution of levels
of invention described in [18]. However, the petege of level one invention is much
higher and the percentage of level three through ifiventions is much lower. The number
of level three through five inventions in the distition of level of invention data is <4% for
the top three level of invention classificationsheTlevel five patents predicted by the
network were reviewed to determine estimate acgura©ne of the level five patents
predicted by the network includes patent numbe63i&b5 and is titled “Biodegradable
packaging material and the method of preparatierets”. This patent fits the criteria of a
level four to five invention given that it represgthe use of a new scientific discovery. The
discovery in this patent is the use of materiaigpfckaging materials that will degrade in the
environment to prevent future environmental potinti The neural network predicted this
patent as a level five invention since it has dtagation received to citation made ratio and
has a large mean forward citation time lag. Thitects that the patent has an effect over a

wide range of future inventions.

Another patent identified by the neural networladsvel five invention is patent number
5,232,243 titled “Occupant sensing apparatus.” sTgatent describes a novel method for
determining when an occupant has entered a vehmdethen adjusting the seat restraint

based on the size of the occupant. This involssgua material containing an electrical
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characteristic that adjusts based on the sizeeointhividual. This patent is closer to a level
four invention than a level five invention becaiutskes outside of the existing paradigm of
mechanical design by using a material to sensecanpant. The use of the material that
contains an electrical characteristic identifiest th tool from science is used. This meets the
definition of a level four invention. This pataatnot a level five invention since it does not
result in a new scientific discovery. The nexttger will discuss the approach taken to

develop a semantic functional basis of design.

5.2 Developing a Semantic Functional Basis of Design

Some of the function terms in the secondary anhtgrcategories appeared much
more frequently than those in the class (primafegory of functions. Therefore, it is
proposed by this research that the class (prinfangtion term “Branch” be replaced by the
tertiary term “remove” since remove is the 19th mased verb in the list of extracted verbs.
In addition, it is very unlikely that the term “Breh” will be used as a major function by
mechanical designs since it appears in less ttd¥®of patented designs. The analysis also
suggests that class function terms provision, cilaand signal be replaced with the terms
supply, transmit and indicate, respectively. TiBisuggested since the later terms supply,
transmit, and indicate are used more widely bymate mechanical designs and provide a
better semantic functional basis that can be usexktract functionality from textual design
descriptions. Finally, the analysis also suggtsita new class of function be added, rotate.
Rotate is used much more frequently than otherdemder the transmit class and represents

a different function than transmitting an object.
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Table 5-1 and Table 5-2include proposed changes as a result of analyttieg
frequency of occurrence of functional terms wittpatent descriptions for mechanical

designs.
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Table 5-1 Proposed Changes to Functional Basis oféddhanical Designs

CLASS Secondary Tertiary
Term Frequency Term Frequency Term Frequency
Remove 0.71%eparate 0.20%
Divide 0.069
Extract 0.04%)
Branch 0.01%
Distribute 0.05%
Transmit 0.35%Import 0.00%
Export 0.00%
Transfer 0.18%
Transport 0.04%
Channel 0.04%0
Rotate 0.73%
Translate 0.05%0
Guide 0.08%
allow 0.379
Connect 1.41%ouple 0.33%
Join 0.09%
Link 0.03%
Mix 0.11%
Control 0.92%Actuate 0.16%
Magnitude Regulate 0.06%
Increase 0.44%0
Decrease 0.10po
Change 0.24%
Increment 0.01%
Decrement 0.00%0
Shape 0.15%
Condition 0.03%
Stop 0.18%
Prevent 0.55%
Inhibit 0.049
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Table 5-2 Proposed Changes to Functional Basis oféddhanical Designs

CLASS Secondary Tertiary
Term Frequency Term Frequency Term Frequency

Convert 0.12%Convert 0.12%
Supply 0.30%Store 0.25%

Contain 0.51%

Collect 0.05%

Provision 0.00%
Indicate 0.84%Gense 0.16%

Detect 0.15%

Measure 0.15¢6

Signal 0.05%

Track 0.10%

Display 0.04%
Process 0.13%
Position 1.01%stabilize 0.05%
Secure 0.66%
Support 0.70%

The analysis suggests that the terms representeglass (primary) set of functional basis
terms should be adjusted to represent more higedy dunctional terms to form a semantic
functional basis. As a result of the analysis @swiound that many other functional terms
occurred more frequently than terms listed in thecfional basis of mechanical designs.
Therefore, it may be necessary to revisit thedigtn further to determine if the secondary
and tertiary list of functions and correspondingndiions provided by Stone and Wood

should be augmented. Some of the highly used ifumadt terms not listed as part of

functional basis of design Class, secondary, tgrba correspondent terms include the terms
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extend, drive, receive, and cut. These functidaahs should be considered as potential
correspondents within a semantic functional bagislesign and possibly considered as
secondary or tertiary functions. The next sectimciudes analysis performed to create a
functional basis for the “coded data generationamversion” class of patents. This process

can be used on other classes of patents to deadlapctional basis.

5.2.1 Developing Semantic Functional Basis for all design Classes

A process has been developed to aid the selecfimtass, secondary and tertiary
terms for a patent class with the intent of gemegad semantic functional basis for other
patent classes. The coded data generation or onepatent class from the USPTO was
used as an example class to demonstrate the procHss first step in the process of
generating a semantic functional basis for patksses is to develop a matrix X that consists
of the term frequency of a patent in a specifisglas a column vector, and the occurrence of
each functional term in the Pahl & Beitz [31], Hahd110] and TRIZ [1, 13] functional

basis as either a class, secondary, or tertiamtifumal term.
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Table 5-3 Matrix for Functional Basis Classification

Matrix X Output Y

Function [Pahl & Beitz Hundal [TRIZ |Term Frequency FB
Branch 0 1 1 0.01% 1
Channel 1 1 0 0.04% 1
Connect 1 1 0 1.41% 1
Control 0 0 1 0.92% 1
Convert 0 0 0 0.12% 1
Provision 0 0 0 0.00% 1
Signal 0 0 0 0.05% 1
Support 0 0 0 0.70% 1
Separate 0 2 1 0.20% 2
Distribute 0 0 0 0.05% 2
Import 0 0 0 0.00% 2
Export 0 0 0 0.00% 2
Transfer 0 0 1 0.18% 2
Guide 0 0 0 0.08% 2
Couple 0 0 0 0.33% 2
Mix 0 2 0 0.11% 2
Actuate 0 0 0 0.16% 2
Regulate 0 0 0 0.06% 2
Change 1 2 1 0.24% 2
Stop 0 2 0 0.18% 2
Convert 0 2 0 0.12% 2
Store 1 1 0 0.25% 2
Supply 0 1 0 0.30% 2
Sense 0 2 0 0.16% 2
Indicate 0 0 0 0.84% 2
Process 0 2 0 0.13% 2
Stabilize 0 0 1 0.05% 2
Secure 0 0 0 0.66% 2
Position 0 0 0 1.01% 2
Divide 0 2 0 0.06% 3
Extract 0 0 0 0.04% 3
Remove 0 0 0 0.71% 3
Transport 0 2 0 0.04% 3
Transmit 0 2 0 0.35% 3
Translate 0 0 0 0.05% 3
Rotate 0 0 0 0.73% 3
Allow 0 0 0 0.00% 3
DOF

Join 0 0 0 0.09% 3
Link 0 0 0 0.03% 3
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This is used to set up a matrix of inputs as shiovirable 5-3 The numbers from O to
3 represent the occurrence of function as eitheused (0), a class function (1), a secondary
function (2), or a Tertiary function (3). The MatrX is used to create multiple linear
regression coefficients used to classify each newtfonal term in the coded data generation
or conversion patent class as either a class, dacpor tertiary function.Table 5-4includes
results of the functional basis classification.né&lional terms that have a high frequency of
occurrence and predicted with a functional basB) (l|alue of 0, 1, or 2 may be selected in
the class (primary) group for functional basis sifasation. Functional terms that appear
with a two will be classified as secondary funci@nd Functional terms that have a two or
three will be classified as tertiary functions. §imethod is proposed as process to aid the
synthesis of a semantic functional basis of defgther patent classes.

A method developed to create a functional synthearsdisciplinary metric includes
using natural language processing and latent séenamalysis to develop a list of physical
and functional terms for different disciplines. iist of terms can be used to measure the
number of functions synthesized in a new inventiofhe list of functional and physical
terms was developed using the method discusséttiprevious sectionsTable 3-4contains
an example list of disciplinary terms for 10 di#et disciplines. This list of terms can then
be used to measure the term frequency for eadhmediunctional terms that reside in each of
these disciplinary lists. This can then be usedé&asure the overall disciplinary function

term frequency of a new design and measure thé déwenctional synthesis. The functional
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synthesis transdisciplinary metric can also be usedeasure the success of new designs by

predicting the breadth of impact and market sucbased on this measure.
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Table 5-4 Exemplary Functional Basis Classification

Function: | Frequency: |FB Function: | Frequency: B
connect 4.42%| O position 0.23%| 2
change 0.53%]| 1 prevent 0.23%]| 2
store 0.92%] 1 track 0.19%]| 2
control 0.91%| 2 display 0.14%]| 2
channel 0.04%| 2 decrease 0.16%| 2
indicate 1.35%]| 2 translate 0.14%| 2
transfer 0.31%| 2 stop 0.11%]| 2
separate 0.11%| 2 rotate 0.13%| 2
supply 1.11%| 2 process 0.10%]| 2
stabilize 0.04%| 2 remove 0.13%| 2
branch 0.01%| 2 condition 0.11%| 2
convert 1.01%| 2 mix 0.02%| 3
couple 0.99%]| 2 support 0.05%] 3
transmit 0.67%]| 2 shape 0.04%]| 3
contain 0.55%| 2 regulate 0.04%]| 3
increase 0.52%| 2 secure 0.04%| 3
actuate 0.37%| 2 distribute 0.04%| 3
inhibit 0.32%] 2 transport 0.00%]| 3
measure 0.32%] 2 link 0.02%]| 3
detect 0.29%| 2 increment 0.02%| 3
divide 0.24%| 2 extract 0.02%| 3
signal 0.27%| 2 join 0.02%| 3
sense 0.22%]| 2 collect 0.01%]| 3
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5.3 Developing a Prediction Model Using Machine Leagnin

A set of thirteen hundred patent documents wascteeleat random to test the
transdisciplinary knowledge integration measum&snachine-learning model was developed
to test the transdisciplinary measures to identifiyether the measures serve as good
predictors of design success. The machine-learmmggdel constructed to test the
transdisciplinary knowledge integration measuresais artificial neural network back-
propagation model. To build the machine-learniragled, a set of training data was gathered
using data from the NBER patent database and USpaIént database. NBER patent data
includes variables defined by Jaffe and Trajtenberff0], such as citations made to other
patents, the level of originality of a patent, tlevel of backward patent importance
calculated using first and second generation patgations and the set of transdiscplinary
knowledge integration measures. These variablgesent independent variables used to
predict the dependent variables: number of citatimeceived, forward patent importance, and
the level of patent generality, also defined byfelaind Trajtenberg in [20]. These three
dependent variables are used as part of the tgadata to build prediction models to test the
capabilities of the transdisciplinary metricgable 5-5includes training data used to train the

artificial neural network model.
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Table 5-5Artificial Neural Network Training Data

Independent Variables Dependent Variables

cmade | IMPORTB | original| Tl | Td | Tmech| Telec | Tchem| TBIO | Tother [Tamuse| Theat |Tcomm|Tnuc| Tmeas| T1 | T2 | T3 | T4 | T5 | T6 | T7 | T8 | T9 | T10|general|creceive| IMPORTF
3 9.5 0.44|0.54/0.17 0.02 0.04 0.00 0.02 0.00 0.02 0.65 0.08] 0.18 0.00{0.04/0.01)0.09|0.01]0.05/0.08/0.15/0.05/0.12|0.41 0.69 12 85.5
4 7.5 0.63]|0.50{0.16 0.00 0.50 0.00 0.00 0.00 0.00 0.00 0.00{ 0.00 0.00{0.01/0.01)0.01]0.00/0.01]0.07{0.01}0.07(0.19|0.63 0.00 3 18.0
10 19.5 0.69|0.13|0.17 0.00 0.00 0.02 0.93 0.00 0.00 0.00 0.00{ 0.05 0.00{0.05/0.00]0.08]|0.01]0.03]{0.04/0.02|0.06{0.10|0.61 0.67 3 9.5
4 10 0.38|0.00{0.15[ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00{ 1.00 0.00{0.00/0.01]0.00|0.02]|0.02]{0.02{0.14]0.14/0.14)|0.50 0.26 14 110.0
18 63.5 0.73|0.00{0.16 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00{ 0.00 0.00{0.01/0.00)0.01)|0.00]0.01]0.04/0.05/0.11|0.22|0.55 0.44 3 25.0
11 54 0.22|0.50{0.16 0.00 0.00 0.00 0.00 0.00 0.50 0.00 0.00{ 0.50 0.00{0.01}0.02)0.02)|0.01]0.01]0.05/0.10{0.15/0.20|0.44 0.79 9 26.5
6 24 0.78|0.00{0.15|  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00{ 0.00 0.00{0.01/0.01)0.00/0.02]0.02{0.01/0.08/0.17(0.10|0.59 0.67 3 6.5
9 27.5 0.81]0.52|0.16 0.00 0.00 0.21 0.64 0.00 0.00 0.14 0.00{ 0.00 0.00{0.01/0.01)0.00|0.08]0.02]{0.04/0.05/0.19/0.11)0.49 0.63 4 16.0
11 28.5 0.63|0.00{0.16 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00{ 0.00 0.00{0.01/0.02)0.17]0.01]/0.01|0.03/0.08/0.08/0.04)|0.55 0.50 2 16.5
6 26 0.28|0.00{0.15|  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00{ 0.00 0.00{0.00/0.01)0.01)0.01]0.02{0.10{0.14/0.06/0.08)|0.56 0.00 1 3.0
8 18 0.32|0.00{0.14 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00{ 0.00 0.00{0.00/0.02|0.02|0.01]0.00{0.03[0.14]0.14/0.14)|0.50 0.24 7 25.0
9 25.5 0.67|0.62]0.18] 0.00 0.57 0.10 0.00 0.19 0.00 0.10 0.05{ 0.00 0.00{0.02]0.00]0.04|0.01]0.02]{0.03{0.02|0.11{0.18)0.58 0.68 22 214.5
8 39.5 0.38|0.60{0.17 0.00 0.00 0.11 0.06 0.06 0.06 0.00 0.06{ 0.06 0.00{0.03]0.01)0.02)|0.03]0.01]{0.09{0.03]0.22(0.13)|0.43 0.54 42 289.5
9 20.5 0.24/0.00{0.17 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00{ 0.00 0.00{0.000.03)0.05|0.03]0.02{0.06{0.02|0.15/0.13|0.52 0.31 11 99.5
3 11.5 0.44|0.66(0.18] 0.10 0.40 0.00 0.00 0.00 0.00 0.00 0.40{ 0.00 0.00{0.03]0.04)0.04)|0.01]0.05|0.04/0.07|0.05(0.19|0.47 0.68 18 154.5
13 43 0.49|0.00{0.15|  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00{ 0.00 0.00{0.00/0.00]0.01]0.01]0.05/0.05/0.11}0.11{0.10|0.56 0.58 89 206.0
10 34 0.59|0.63(0.17 0.00 0.00 0.25 0.00 0.00 0.00 0.25 0.00{ 0.00 0.00{0.02]0.02)0.01)0.01]0.03]0.05/0.05/0.13/0.08)0.61 0.47 78 645.0
6 19 0.50/0.00{0.17 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00{ 1.00 0.00{0.01/0.03)0.04]|0.01]0.01]0.05/0.05/0.06{0.20|0.53 0.31 11 325.0
6 18 0.28|0.76/0.17 0.03 0.08 0.08 0.05 0.03 0.00 0.30 0.35/ 0.00 0.00{0.04/0.02)0.07]0.03]0.03]|0.06/0.05/0.04/0.20|0.47 0.12 16 64.0
5 18 0.56|0.71{0.17 0.00 0.00 0.18 0.00 0.18 0.09 0.45 0.00{ 0.00 0.00{0.02]0.03]0.06|0.02|0.04]{0.05{0.01}0.10{0.21)|0.47 0.67 6 23.5
10 34.5 0.66|0.80{0.17 0.11 0.05 0.00 0.37 0.05 0.11 0.11 0.00{ 0.11 0.00{0.03]0.01]0.02|0.03]0.03]{0.04/0.03]0.11{0.18)0.53 0.56 23 322.5
6 14 0.50|0.45|0.17 0.00 0.73 0.00 0.00 0.09 0.00 0.00 0.00{ 0.09 0.00{0.03]0.01)0.03)0.02]0.03]{0.08/0.09/0.08/0.03|0.61 0.78 12 158.5
6 24 0.28|0.54/0.16 0.50 0.00 0.00 0.05 0.00 0.00 0.00 0.00{ 0.00 0.00{0.01/0.00)0.01)|0.01]0.02|{0.03/0.10{0.10{0.19|0.54 0.45 11 476.5
11 34 0.59|0.00{0.15|  0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00{ 0.00 0.00{0.02]0.03)0.04]|0.00]0.02]{0.04/0.10/0.15(0.10|0.51 0.78 8 59.5
3 8.5 0.44/0.00{0.16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00{ 0.00 0.00{0.00/0.02)0.00|0.00]0.00{0.04/0.09/0.14(0.22|0.49 0.00 2 19.5
9 30 0.53|0.00{0.16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00{ 1.00 0.00{0.02]0.00]0.00|0.00/0.00{0.08/0.03]0.09/0.16|0.62 0.79 24 184.5
11 31.5 0.22]0.00{0.16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00{ 0.00 0.00{0.00/0.00]0.00|0.00/0.00{0.01/0.03]0.11{0.12|0.71 0.41 8 56.0
15 33 0.38]0.00{0.17 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00{ 0.00 0.00{0.00/0.06|0.01|0.01]/0.01]{0.16{0.03]0.17(0.08)|0.48 0.00 8 108.0
14 44 0.67|0.00{0.15[ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00| 0.00 0.00{0.00/0.03]0.01]|0.01]0.00{0.09{0.08/0.11{0.10|0.57 0.64 5 18.5
4 8.5 0.50|0.00{0.15[ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00{ 0.00 0.00{0.00/0.00)0.00|0.06]0.00{0.01{0.17|0.09(0.16)|0.49 0.00 1 27.0
14 33 0.49|0.22|0.15]  0.00 0.00 0.00 0.13 0.00 0.87 0.00 0.00{ 0.00 0.00{0.03]0.03)0.01)|0.00]0.01|0.04|0.03]0.07(0.09|0.69 0.63 4 51.5
11 18.5 0.67]0.48|0.15]  0.00 0.00 0.60 0.00 0.00 0.00 0.40 0.00{ 0.00 0.00{0.01]0.02)0.03)0.02]0.01]{0.01/0.07]0.10{0.06)0.67 0.47 40 372.0
9 37.5 0.37]0.00{0.15|  0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00{ 0.00 0.00{0.00/0.01)0.02)|0.01]0.04]0.02/0.03]0.23/0.08)0.55 0.43 22 246.0
13 34 0.46|0.32/0.17 0.00 0.00 0.00 0.80 0.00 0.00 0.00 0.20{ 0.00 0.00{0.01/0.05)0.01]0.02]0.03]0.07{0.05/0.10{0.11)0.55 0.67 3 6.0
18 54 0.69]0.00{0.18 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00{ 0.00 0.00{0.02]0.03]0.12]0.02]0.01]0.05/0.06/0.06/0.10|0.54 0.61 6 67.5
9 36.5 0.72|0.00{0.16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00{ 0.00 0.00{0.00/0.00]0.02|0.02]|0.03{0.01{0.03]0.09(0.10|0.71 0.00 1] 8.0
6 12.5 0.38]0.00{0.15] 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00{ 0.00 0.00{0.01]0.00]0.00|0.00]0.02{0.01{0.04|0.07{0.07|0.78 0.50 2 45.0
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The machine learning technique used to train thelahan this example is the
artificial neural network back-propagation algomthsupplied in Matlab Neural Network
Toolkit. The neural network is used to train a mageng an expanded set of training data,
similar to the example training data shown in Tab® Artificial Neural Network Training
Data. To train the artificial neural network, tthata set was broken up into a training set that
consists of 90% of the data, a validation set gmeng 5% of the data and another 5% of
the data to test the network performance. The otwas built using 50 hidden neurons to
train the inputs to the targets to improve thenirgg and test data correlation coefficients.
The inputs to the network represent the number itdfticns made, patent backward
importance, patent originality, and 22 transdisogaly measures for each patent. The target
data represents the level of generality, the nunabesitations received, and the forward
importance for new inventions.

The measure of originality is calculated usingfilowing equation [20]:

0=1- (k
'

)2
where i is the patent under consideration, b istmaber of patents cited and k
indicates the subclass of the CITED patent as atdicin the NBER database.

The measure of generality is calculated using allewing equation [20]:

g =1 (%
k=1 T

where f is the number of patents citing patentd mmndicates the subclass of the

cited patent as indicated in the NBER database.
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The measure of forward and backward patent impoetésimeasured using the

following equations:

Cr,

IF =Cr +/ Cr

i+1)
j=1

cm
B =Cm+/ Cm,

j=1

Where IF is the forward patent importance, Cr & tlamber of citations received by
other patents, IB is the backward patent importa@ee is the number of citations made to
other patents by the patent, i is number of fiestgration citations, j is the number of second
generation citations and= 0.5 is a discount factor provided by Jaffe amdjt€nberg that is
used to reduce the contribution of 2nd generatetergs in the measurement. [20]

Figure 5-3 presents neural network performance datapredicting the level of
generality, number of citations received and fovpatent importance. In addition, more
detailed results are provided in Appendix B. Thedmtive model trained to predict design
generality fit the test data set with a correlatioefficient of 0.51. In addition, the citations
received model fit the test data with a correlatiomefficient of 0.33. The forward
importance prediction model fit the test data wattcorrelation coefficient of 0.37. This
verifies that the transdisciplinary measures hdwe potential to predict the impact an
invention will have on future inventions based ba functionality employed across multiple

disciplines.
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Generality Prediction (Training, Validation and Test Data)

Citations Received Prediction (Training, Validation and Test Data)

Forward Importance Prediction (Training, Validation and Test Data)

Figure 5-3 Final Neural Network Prediction Results
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CHAPTER 6

CONCLUSION AND FUTURE RESEARCH

6.1 TRIZ Metric Estimation

Future research will investigate methods for imprgwthe performance of the machine learning
model. One method to improve the neural networkopeance includes increasing the training data
set by manually estimating the level of inventionrnore patents or getting standard/published data
from TRIZ researchers and increasing the numbardefpendent variables used in the training data
set. Another approach for increasing neural ndtywerformance is to base the neural network on
functional and physical terms using latent semaantalysis to identify key design terms that
represent each of the patents within the field e€lnanical design. This method could provide a
predictive measure that indicates the level of iz for more recent patents that have yet receive
many citations. Other areas to increase netwaflopeance may include using term frequency
metrics based on the use of natural language Biogeand latent semantic analysis. Latent semantic
analysis could be used to identify key terms thagmvused result in a higher level of invention.
Furthermore, functions used in the estimation gfree of ideality could be separated in to usefdl an
harmful functions to increase the accuracy of thgrele of ideality estimation. Finally, machine
learning models could be created to determine éisggd position on TRIZ laws/trends of technology

evolutions.

6.1.1 Use of TRIZ Metrics to Support Design Innovation

TRIZ metrics such as degree of ideality and levéhweention can be used early in the
design process to support concept generation,iimadtmodeling, and functional synthesis.
A wide range of patents that span across multigeiglines can be analyzed to see how new
design components evolve over time to perform ggssystem functions or create new
functions by integrating cross domain knowledgeateRt citation networks are used to

identify patents that initiate technological distionities by using a new set of components
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to perform common functions. These trends of evmiucan be examined using metrics
such as degree of ideality and level of inventiém.addition, new metrics can be created by
employing text mining techniques to extract a setkkey words that represent a given
discipline. These key words identify how composeinom multiple disciplinary fields can
be integrated to develop new technologies to perfexisting system functions. [17] Data
mining techniques can be used to generate TRIZiecsetor a large number of patents.
Machine learning techniques can then be used to treural network, or other machine
learning, models to uncover evolutionary trends teaide in patent data. These trends can
be used in the concept generation process to reglesign trends that lead to innovative
design concepts. As part of future research, g af machine learning techniques and
approaches will be used to train prediction motleds can help in the innovation process by

predicting future success of new designs.

6.2 Semantic Functional Basis of Design

This dissertation includes an approach to clagdsifigtional terms to aid in the process of
creating a semantic functional basis for multipiecighlines. A semantic functional basis of
design can be used in the concept generation pgbagevelop a metric for design success
based on determining the integration of functidgalicross many domains. For future
research the authors suggest that it is possiblelassify patents into clusters using a
semantic functional basis of design centered omeétand Woods function and flow
definitions. This classification can then be ussda metric during the concept generation

phase to understand design concepts from other identlaat result in successful design
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problem solutions. In addition, WordNet can beduseidentify hypernyms and hyponyms
for functional concepts. Finally, Wordnet could heed to create different levels of

functional basis based on the relationships betwl#ésrent functional concepts.

6.3 Transdisciplinary Knowledge Integration Measures

The results of this research indicate that it issgale to employ a set of transdisciplinary
metrics to serve as inputs for predicting the sss@f new inventions. This dissertation has prhfo
a methodology for use in generating a set of trigogdinary knowledge integration measures based
on the use of natural language processing andtlagmantic analysis techniques. In addition, a
machine-learning model has been developed usisgnkethodology that will help in the evaluation
of new inventions.

As part of future research the authors suggesthismarchical relationships of knowledge
between disciplines be studied to understand tHference between lower- and higher-level
knowledge transfer. Furthermore, a new set ofstieeiplinary metrics should be developed that
includes the integration of physical design compdsevith functions to create a set of technology-
based term constructs that can be used to medseireansdisciplinarity and interdisciplinarity of
new designs based on existing technological systéfeghnological systems would then be used to
measure invention transdisciplinarity instead dft jthe physical and functional items that make up
these systems. In addition, other machine leart@iolniques can be explored further to improve the
accuracy of this method.

Further research will also investigate using arifigel neural network to predict
innovative potential. Approaches for developingimmovation potential model include the

following:
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First, use functions and objects separately byticirga list of functional and physical
transdisciplinary measures. This is accomplishedsdyyarating subjects and objects from
action verbs. Another method includes using Go&glgeRank as a measure of importance.
In addition, machine learning techniques could ®eduto train prediction models containing
other engineering design theory metrics. Thisudebk using dominant design, technological
discontinuities as targets in a machine learninglehoFinally, a series of patents could be
modeled. Functions and solutions for a seriesatémds are determined and then compared
along the series to see changes. This method @lstd be used to identify how TRIZ
contradictions are solved. All of these areas khba explored as part of future research to

develop a method to predict innovation potential.
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APPENDIX A

SOFTWARE MODULES AND EXAMPLE OUTPUT

Figure A-1 Patent Information Extraction and NLP SW
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Example Patent XML Report Generated using Patent SWor Patent # 5178393
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Figure A-2 Example Verb, Subject, Object Report forPatent # 5178393
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Figure A-3 Latent Semantic Analysis SW
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Figure A-4 Patent Citation and Importance Calculaton Source Code and Example output
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Example Citation Tree Output file

PARENT PATENT: 3919173

Moisture curable polyurethane systems

CITED PATENTS [ 2nd GEN CITED COUNT ]

28300370 ]
3192186 0]
3351573 0]
3352830{ 0 ]
34259730 ]
3463748 0 ]
3479325 0 ]
3549569 0 ]
3554962 0 ]
3652508 0 ]
3663514 0 ]

IMPORTB = NCITED + discountFactor * sumNCITED
11=11+05*0

CITING PATENTS [ 2nd GEN CITING COUNT ] - CITING PRENT TITLE

7,435,464 0] - Articles comprising aqueous dispersions of polyurethanes

6,846,849 0] - Saccharide-based resin for the preparation of foam

6,822,047 0] - Saccharide-based resin for the preparation of csit@products
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6,720,389 2] - Polyurethane latexes, processes for preparing #mehpolymers prepared therewith

6,680,354 2] - Coating composition having improved early hardrees$s water resistance

6,677,425 0] - Clear coating composition having improved earlydnass and water resistance

6,610,224 0] - Dry process for bonding silica-rich plant materials

6,514,577 0] - Polyurethane films prepared by electrodepositiomfpolyurethane dispersions

6,472,493 5] - Clear coating composition having improved earlydnass and water resistance

6,451,909 3] - Polyurethane films prepared from polyurethane d&pas

6,433,059 0] - Method for preparing binder materials containingatyanates

6,368,714 2 ] - Moisture-activated adhesive compositions

6,180,713 0] - One-can moisture-curing urethane compositions

6,087,44( 2 ] - Continuous process for preparing a polyuretharex lat

5,959,027 9] - Continuous process for preparing a polyuretharex lat

5,574,114 6] - Mixture of isocyanate-terminated polyurethane phapers

5,559,194 4] - Mixture of isocyanate-terminated polyurethane phapers

5,558,941 2] - Article including an adhesively bonded moistureecumaterial and a method of

making the same

5,536,809 8] - Mixture of isocyanate-terminated polyurethane phapers having good adhesion

5,506,324 16 ] -Low VOC, moisture curable, two-component coatinmpositions based on

organic polyisocyanates

5,436,307 2] - Mixture of isocyanate-terminated polyurethane phapers

5,418,31( 10 ] - Mixture of isocyanate-terminated polyurethane phapers having good adhesion

5,147,891 3] - Method for producing non-yellowing polyurethaneaifeam

5,064,871 3] - Latent catalysts comprising bismuth carboxylates arconium carboxylates
RE33,17 0] - Method for making decorative emblems

4,889,744 12 ] -Display device
4,812,354 8] - Coating composition for flexible substrates andubke thereof, and a method for the

production of a protective coating

4,710,560 12 ] - Polyurethane coating composition

4,562,289 2 ] - Homogeneous storage stable cyanamide solutionslyolp and a process for their

production
4,513,117 8] - High build, ambient cure coating compositions
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4,395,53(0 7] - Catalyst initiated prepolymer systems

4,345,059 10 ] -Urethane prepolymer repair system

4,211,841 3] - Polyurethane foams and foam forming compositiomgaining amine scavengers

4,199,489 12 ] - Moisture curing polyurethane topcoat paint displaygeometric metamerism
4,100,010 30 ] -Method for making decorative emblems

IMPORTF = NCITING + discountFactor * sumNCITING
126.5=35+0.5*183
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APPENDIX B

NEURAL NETWORK PREDICTION RESULTS

Figure B-1 Predicting Level of Invention Using Neual Network back propagation and

100 hidden neurons

113



Texas Tech University, Christopher M. Adams, Decen#®09

Figure B-2 Predicting Generality Using Neural Netwok back propagation and 20

hidden neurons
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Figure B-3 Network Training Using Generality Data
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Figure B-4 Predicting Importance Using Neural Netwok back propagation and 20

hidden neurons
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Figure B-5 Network Training Using Forward Importance Data
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Figure B-6 Predicting Citations Received Using Newl Network back propagation and
20 hidden neurons
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Figure B-7 Network Training Using Forward Citations Received Data
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Figure B-8 Predicting Importance Using Neural Netwok back propagation and 20

hidden neurons
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Figure B-9 Network Training Using Forward Citations Received Data
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APPENDIX C

SURVEY OF DATA MINING TECHNIQUES

One of the tasks performed as part of this tracguisary research was reviewing
different machine learning and data mining toolsiétermine the best approach/technique to
apply to the problem. A number of data mining andchine learning techniques and
approaches were reviewed to select the best mathegply to the problem. The initial
methods reviewed include the use of genetic algmst and genetic programming, support
vector machines (SVM), artificial neural networkkgcision trees, clustering, and learning
Bayesian networks. The following includes a sumnwrgach of the machine learning and

data mining approaches.

1. Genetic Algorithms and Genetic programming: Thigchine learning technique is an
optimization technique that is based on evolutigr@ncepts. Genetic algorithms and
genetic programming use ideas such as naturalteelegenetic mutation, and genetic

combination to perform optimization. [49]

2. Support Vector Machines: This machine learning mépe is a method used for
classification and regression analysis. SVMs ds® &nown as maximum margin

classifiers. [50]
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3. Artificial Neural Networks: This machine learningtd mining technique is based on
biological neural networks and represents a nogalinpredictive model that has the

ability to learn by training the model with histcai data. [43]

4. Decision Trees: This data mining method is usecte¢ate hierarchical trees that include
nodes at each branch in the tree that represattad decisions. The decisions in the tree

are used to construct rules for classifying the@ dathe database analyzed. [53]

5. Clustering: consists of classifying data elements tlustered groups by partitioning the
data in a database into a subset of clusters. iFlwgen performed using some measure

of distance between the different data elementisardatabase. [38]

6. Learning Bayesian Network: A Bayesian network cargs a directed acyclic graphical

model that is used to create probabilistic relaiops between a set of variables. [57]

Once a machine learning or data mining techniquetsgeh is selected to apply to the

problem, a predictive model will be developed udimg applicable method.

This section includes preliminary results from gpug different data mining and machine
learning techniques/approaches to NBER patent daigure C-1 demonstrates the use of clustering
analysis to segregate different patent attributés multiple clusters. The main patent attributes
analyzed in Figure C-1 include the patent applicaiiear, number of citations received by each of
the patents and the patent class for each patés. analysis was conducted on a subset of thepate
data associated with the communications patengoate The clustering analysis provides interesting
insight into the different classes of patents ia tategory of communications and helps understand
the correlation between the application year ohtemt, the patent class and the number of citations
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received. However, clustering analysis was nactetl as the approach to apply to the problem due

to the limited ability to predict the success fdfedtent patent parameters.

Figure C-1 Example Clustering Analysis Applied to Rtent Data

The second data mining approach used to analyeatpddta was the decision tree. Figure 3
2 provides an example decision tree applied tonptien the communications patent technological
category. The decision tree includes branchesrdikgct the number of citations received for each
patent and enables the data analyzer to make desigihen selecting patents to review based on the
number of patent citations received. In additithre decision tree is also thought of as a machine
learning enabler since it can be used to learn flata by assigning a set of decisions to eacheof th
branches in the tree by automatically arrangingdhta. Figure 3 2 shows the branches on the
decision tree that provides patent numbers atrnldeogé each branch on the tree based on the number

of patent citations received.
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The decision tree can become much more complicayethcluding data from the patent
database to make decisions based on the numb#atidres made to other patents, the state in which
the patent originated, the patents level of orilifijneand patent assignee code. A tree includirmgam
than three or four input variables is too compkcato show as an example in this Dissertation.
Therefore, Figure C-2 is included as a represamtatf an example decision tree. Keep in mind that a
much more complicated decision tree will have mamye branches and decisions that would take
hours to review and require the reviewer to pruranthes on the tree in order to see higher level
decisions. The decision tree could be used asveafd-looking measure to review what patented
ideas have the biggest impact on future desigmsaddition, the decision can be used to classify
designs based on their level of success. Theidedi®e does provide a probability for each of the
branches in the tree. However, the decision tree ned selected for use in the predictive models at
this time. It will be considered in future work agotential method to apply supervised learning to

one or more data mining and machine learning tegtes and approaches.

Figure C-2 Example Decision Tree Applied to PaterData
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Other data mining and machine learning technigeeigwed for use in the predictive models include
genetic artificial neural networks and learning Bsign networks. A preliminary learning Bayesian
network was constructed using variables includethenNBER patent database. The initial set of
original independent variables selected for thernieg Bayesian network include the patent
application year, the patent assignee code, trenpsgchnological subcategory, and the state of the
first inventor where the patent originated. Iniéidd, a set of constructed independent variablesew
selected from the variables constructed by Jaffé Bmajtenberg [23]. The constructed variables
include the number of patent citations receive@ tlumber of patent citations made, the mean
forward citation lag, and the mean backward citalmg. Finally, three dependent variables were
selected to include in the learning Bayesian ndtwofhis includes one constructed dependent
variable, the level of generality, and two depemdemiables that will be predicted as an outcome of
the learning Bayesian network.

An initial Bayesian network was constructed in fitien of a Directed Acyclic Graph (DAG).
Figure C-4 demonstrates a Directed Acyclic GrapA@) that is used to construct conditional
independence relationships between independerdblasi and dependent variables in the Bayesian
network. The DAG included in Figure C-3 was irltiaconstructed to be modeled using the Bayes
Net Toolkit [40] developed by Kevin Murphy. Thisoael was not selected for use to build the
predictive models and will need to be explored at pf further research. The nodes in the DAG
represent continuous and discrete random varidhlgsare constructed using data from the NBER
patent database. Construction of this DAG wasailhjtistarted using the Bayes Net Toolkit, but it
was determined that due to the size of the vedtwrsontinuous and discrete random variables the
Bayes Net Toolkit will require the use of “Condiiml Gaussian Models” that will be much more

time consuming to construct. The numbers assitmedch node in the graphical model included in
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Figure C-3 are used in the Matlab code to referéinegoarent and child relationships between nodes
in the graph. The DAG is used to generate comnditiprobability distributions between each node.
Using Bayes Rule it is possible to write the jgimbbability distribution for the “surprise” metric,

included and highlighted in blue in Figure 3 4,tbg following equation:

P(12,10,3,9,5,6,4,2,1) = P(12 | 10,3,5,4,6,9) 0R(.,6) * P(3) * P(5 | 3,4,1) * P(6 | 3,4,2,1) (9R

56,1)*P(4|3,2) *P(2) * P(1)

A joint probability distribution can be constructéal each of the remaining nodes in the
graph that represents the probability of occurreiocghe node given the probability of occurrence
for each of its parents. A number of other joirahability distributions could be constructed using
the Bayes Net Toolkit to form predictive models éach of the transdisciplinary metrics.

The next chapter of this dissertation includesrésailts of this research. It provides detailed
data analysis and documentation of the papers s$igoinio open literature used to validate the
contribution of this dissertation. Four predictiveddels were constructed as part of the research in
this dissertation using an artificial neural netkvoiThe first model discussed is used to measwge th
level of invention of a new product or design. alddition, a method is provided for estimating the
degree of ideality of a new product using natussiguage processing. Furthermore, a semantic
functional basis of design is constructed usingumatlanguage processing and latent semantic
analysis. This semantic functional basis of desigm be used to measure the use of functional and
physical design terms in a new product or desifhese terms can then be used to measure the level
of design functional synthesis. Other predictivedels discussed in this section are constructed

using a set of transdisciplinary metrics to pretlet level of generality of a new design or product
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The level of generality can be used to predictitfeadth of impact a design or product will have on
future inventions. Finally, two more predictive dats were constructed that use the same set of
transdisciplinary metrics used to predict generalit measure the level of forward importance and

number of citations received of a new design.

. ‘
Citations
Received
A '
‘
Mean Forward -
citation lag

Surprise

State of
first
Inventor

Mean
Backward
citation lag

Emergence
of Dominant
Design

10

Figure C-3 Bayesian Network Directed Acyclic Graph

Predicting the innovation level of new designs kelmventors explore the
possibilities of success when bringing a new produenarket. The use of metrics from the
field of TRIZ and innovation theory helps designengasure the future success of their
products. This section provides a novel computigcamethod to measure the emergence of
a dominant design and birth of a technological ahsiouity by developing a set of

innovation metrics using machine learning technsqué training data set developed using
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patent citation data can be used to train a madbkeraing model employed to measure the
growth and death of the number of firms over timghiw a patent citation tree that
represents the evolution of new technological ime@s. Patent citations, the number of
firms involved in a technological market and theam@e in physical components used to
perform common functions over time serve as inddpetvariables in a machine learning
model. The dependent variables in the model aed as predictors of the dominance a new
design has in a given market by measuring the deftfirms in that market and the
technological discontinuity realized by a suddeplesion of firms. This machine learning
model is built with variables extracted using natuanguage processing to measure the
change in physical design components. In additmsupervised learning such as k-means
clustering and supervised learning techniques hi&eral networks are used to build, train

and test machine learning models.

Preliminary results suggest that the emergencedanainant design was found to be
closely correlated with the importance of a pawescribed by Jaffe and Trajtenberg [23].
What is a dominant design? A dominant design ispacific path , along an industry’s
design hierarchy, which establishes dominance ansongpeting design paths.” [36] One of
the major questions from reviewing patent citatiata is whether the emergence of a
dominant design can be correlated with the numibgratent citations received from other
patents. This is in someway correlated with thell®f importance explained by Jaffe and
Trajtenberg in [23]. Where level of importancesé&a on the number of forward patent

citations, is quantified by the following equatif@3]:
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IMPORTFi = NCITINGi +

Where NCITINGI is the number of patents citing trgginating patent and is an “arbitrary
discount factor” used to reduce the weight givemitations that cite a patent that cites the
originating patent. Or in other words, second gatnen patents. Another factor that plays
into the emergence of a dominant design is the eumb firms entering and exiting the
market for a specific design [36]. Utterback anthi®z suggest that a firm has a higher
probability of survival if it enters the market be¢ the emergence of a dominant design.
Therefore, a potential measure is created for airkom design that calculates the number of
firms entering the technological market (subcatgg@nd which are involved with the
evolution of a design that has a high level of im@ace. Thus the emergence of a dominant

design can be calculated by the equation below:

IMPORTFi + INVENTi *(TECHSUBN) = DOMDESI

Where INVENTI is the number of inventing firms ihet design market and TECHSUBN
represents the number of technological subcategom®lved in the market. This metric can
be enhanced further to include considerationsHernumber of firms entering and exiting a

technology market. This enhancement helps fordaagte emerging dominant designs.
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An example dominant design based on mining patemtd dising exCITE patent
citation software [41] demonstrates that a domindegign results in a high number of
competing firms developing a similar product withigh number of citations received by the
original dominant design. Figure C-4 includes &areple of this using a multimedia device
that represents the citation network as well agntimg firms growing exponentially upon
the emergence of a dominant design. Also showfignre C-4 is the patent for an MP3
player design that represents a potential techmeabgliscontinuity that leads to the
subsequent emergence of a dominant design. ThHedkgical discontinuity can be
considered as a surprising event [15] in the desigrid that leads to the evolution of new
product ideas. This element of “surprise” [34] ¢cenfurther modeled as the basis of future
research and form the foundation of generating rottensdisciplinary metrics related to
evolutionary design initiative. The next willdnde a summary of the conclusions obtained

form this research and an overview of future regde&s be conducted.
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Media device patent
#D517088

Media device patent

#D507277 /

Potential
Dominant
Design

Media device patent
#D538820

MP3 Player patent

#D490068 \

MP3 Player #D512403

Figure C-4 Example Dominant Design Using Media Dege Patents

The results of this research indicate that it issgide to employ a set of
transdisciplinary metrics to measure the successewof inventions. This research has put
forth a methodology to use in generating a setrarisdisciplinary knowledge integration
measures with the use of natural language proagsaimd latent semantic analysis
techniques. In addition, a machine learning modat been developed using this

methodology that will help in the evaluation of newentions. As part of future research
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the author suggests that the hierarchical traosiadf knowledge between disciplines be
studied to understand the benefit of exploringdliference between lower and higher level
knowledge transfer. Furthermore, a new set ostiatiplinary metrics should be developed
that includes the integration of physical desigmponents and functions to create a set of
technology based term constructs that can be usedeasure the transdisciplinarity and
interdisciplinarity of new designs based on exigtiechnological systems. Technological
systems are then employed to measure inventiosdisgiplinarity instead of just physical
and functional items that make up these systems.

In addition, this research includes an approactldssify functional terms to aid in
the process of creating a semantic functional basisnultiple design classes. A semantic
functional basis of design can be used in the qangeneration phase to develop a metric for
design success based on determining the integrafidmnctionality across many domains.
For future research the authors suggest thapissible to classify patents into clusters using
a semantic functional basis of design centered mmeSand Woods function and flow
definitions. This classification can then be ussda metric during the concept generation
phase to understand design concepts from other identlaat result in successful design
problem solutions. In addition, this research @@ method to classify patents into the five
level of invention categories from TRIZ. Futuresearch should be conducted to augment
this approach using transdisciplinary term metrioserdisciplinary and transdisciplinary
metrics as independent variables in the level okmtion classification models. Further

research can also be conducted using other sedidhs patent text such as patent abstracts,
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and claims. This research can be used to furtreuate design solutions during the concept
generation phase. Other design metrics should adsexplored as part of future research
including, but not limited to, using a semantic dtional basis of design to extract TRIZ

contradiction resolution instances from patent,tard determine the evolutionary potential
of a design concept based on the use of functiyrni@dm many disciplinary areas. These
areas will continue to be explored as part of farttesearch. This will focus on the use of a
semantic functional basis to extract function amawf information used to generate

successful, creative and innovative design concepts
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APPENDIX D

ENGINEERING DESIGN PROCESS METRICS

The first Transdisciplinary design processes regwre TRIZ and Axiomatic Design [1,

23]. The metrics inspired by these two design @sses include the five levels of invention,

degree of ideality and resolution of contradictidnem the TRIZ design process. Next,

metrics extracted from the Axiomatic Design procéssude the resolution of design

coupling. A definition of the metrics from TRIZ @xiomatic Design is included in Figure

D-1.

Metric

Level of
Invention

TRIZ &
Axiomatic Design
(Metrics)
Level of Invention
Degree of Ideality
Resolution of
Design Conflict/
Coupling

Degree of
Ideality

Resolution of
Design
Contradiction /
Coupling

Measurement Definition

Level 1 A component intended for the task is used. No system
conflicts are resolved.

Level 2 Existing system is slightly modified. System conflicts are
resolved by the transfer of a solution from a similar system.

Level 3 System conflicts are resolved by radically changing or
eliminating at least one principal system’s component. Solution
resides within one engineering discipline.

Level 4 System conflicts are resolved and a new system is developed
using interdisciplinary approaches.

Level 5 Resolving system conflicts results in a pioneering invention
(often based on a recently discovered phenomenon.

The benefit-to-cost ratio of the system or the ratio of its functionality,
to the sum of various costs associated with the building and
functioning of the system.

A physical contradiction is formulated by the pattern: To perform
Action Al the component must have property P, but to perform action
A2 the component must have an opposite property P. Axiomatic
design relates Design Contradiction to coupling of functional
requirements and design parameters.

Figure D-1 Design Process Metrics from TRIZ anddimatic Design

Additionally, innovation management theory includhestrics such as the emergence

of a dominant design[19] and technological discurities[2]. These are two widely
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accepted metrics in the innovation community foemeing the success of a new design. A

definition of metrics from Innovation and CreativManagement is included in Figure D-2.

Innovation &
Creativity
Management

Dominant Design
Technological

Discontinuity

Metric Measurement Definition

Dominant A specific path , along an industry’s design hierarchy, which
Design establishes dominance among competing design paths.

Technological A competence destroying or competence enhancing technology
Discontinuity that changes the current technological market.

Figure D-2 Design Process Metrics from Innovatio€g&ativity Management

Furthermore, functional basis of design providededinition of commonly used
functions and functional flows employed by designdhe number of functions and
functional flows employed by a design also providegseful metric for design evaluation.

[4, 5] A definition of metrics from functional basof design is included in Figure D-3.
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Functional Basis

YEN Measurement Definition

of DeSIgn Number of A description of an operation to be performed by a device or artifact,
Number of Functions  expressed as the active verb of the sub-function.
Functions Employed

Number of  Number of quantities that are input and output by functions. A flow is the
Employed Functional  recipient of a functions operation.
Number of Flows

Functional Flows

Figure D-3 Design Process Metrics from Functiona$iB of Design

Finally, from the field of cognitive psychology mies such as flexibility [111],
originality [112], depth [113], and generality [26f] a design can be used to measure concept

success. A definition of metrics from cognitiveygisology is included in Figure D-4.

Metric Measurement Definition

Flexibility Degree of diversity in reactions shown under normal conditions and
responsiveness to environmental pressures to change.

Cognltlve Originality =~ Concerned with giving ideas that are statistically unusual

Psycho_l(_)gy Depth The extent of which an idea/patent/design is specialized in its own field.
Flexibility d,= depth of item |
Originality d; = depth of item j in field i
Depth n; = number of total items in field i.

Generality ks the index of item (patent) classes and N;is the number of different class
to which the citing items (patents) belong.
NCITING is the number of patents Generali=1- 3
citing the originating patent. Al

Generality

b [NCITINC}ikJ

NCITING,

Figure D-4Design Process Metrics from Cognitive Psychology
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APPENDIX E

MATLAB M FILES

%Read in Training Data to train neural network
Td=xlIsread(TMfinalc', 'Sheetl"G2:B11302);
general=xIsread(Mfinalc', 'Sheet]"CF2:CF1303;
creceive=xIsread(Mfinalc', 'Sheet]"CG2:CG1303;
ImportF=xIsread{ Mfinalc', 'Sheetl"CH2:CH1302);
crecgenimport =xIsread(Mfinalc’, 'Sheetl"CF2:CH1302);
crecnorm =xIsread(Mfinalc’, 'Sheet1"CI2:CI1302);
successrate =xIsreadi/Ifinalc’, 'Sheet"CJ2:CJ130Y;
factor =xlIsread( Mfinalc', 'Sheet]"CK2:CK1302);
TdT = Td"

generalT = general’;

creceiveT = creceive’

ImportFT = ImportF’;

crecgenimportT = crecgenimport’;

crecnormT = crechorm’;

successrateT = successrate’,

factorT = factor’;

%Perform principal components analysis
X=csvreadfneas1549.csyl, 1);
[pc,SCORE,latent,tsquare] = princomp(X);
csvwrite(meas4COL1.csype);
csvwrite(meas4SC.csvSCORE);

csvwrite(meas4lat.csylatent);
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csvwrite(meas4tsg.csytsquare);

function[net,ps,ts] = fitwithnet(p,t)

%FITWITHNET Creates and trains a neural networkttmput/target data.
%

% [NET,PS,TS] = FITWITHNET(P,T) takes:

% P - RxQ matrix of Q R-element input samples

% T - SxQ matrix of Q S-element associated tasgmples

% arranged as columns, and returns these results:

% NET - The trained neural network

% PS - Settings for preprocessing network inputis MAPMINMAX.
% TS - Settings for postprocessing network oistmith MAPMINMAX.
%

% For example, to create an network with this fiomc

%

% load housing

% [net,ps,ts] = fitwithnet(p,t);

%

% To test the network on the original or new data:

%

% pn = mapminmax(apply',p,ps); % Preprocesstsp

% an = sim(net,pn); % Apply network

% a=mapminmax(reverse',an,ts); % Postpromeigaits

% e=t-a; % Compare targets and outputs

%

% To reproduce the results you obtained in NFTOOL.:

%

% [net,ps,ts] = fitwithnet(TdT,generalT);

139



Texas Tech University, Christopher M. Adams, Decen#®09

% Random Seed for Reproducing NFTool results
rand(seed5.04820881E8)

% Normalize Inputs and Targets
[normInput,ps] = mapminmax(p);

[normTarget,ts] = mapminmax(t);

% Create Network

numinputs = size(p,1);

numHiddenNeurons = 20% Adjust as desired
numOutputs = size(t,1);

net = newff(minmax(norminput),[numHiddenNeurons,@umputs]);

% Divide up Samples

testPercent = 0.20% Adjust as desired
validatePercent = 0.20% Adust as desired
[trainSamples,validateSamples,testSamples] =

dividevec(norminput,normTarget,testPercent,validateent);

% Train Network

[net,tr] = train(net,trainSamples.P,trainSampld[],validateSamples,testSamples);

% Simulate Network

[normTrainOutput,Pf,Af,E trainPerf] = sim(net,tr&amples.P,[],[],trainSamples.T);
[normValidateOutput,Pf,Af,E,validatePerf] =
sim(net,validateSamples.P,[],[],validateSamples.T);
[normTestOutput,Pf,Af,E testPerf] = sim(net,testp&n.P,[],[],testSamples.T);

140



Texas Tech University, Christopher M. Adams, Decen#®09

% Reverse Normalize Outputs
trainOutput = mapminmaxéversehormTrainOutput,ts);
validateOutput = mapminmaxgversenormValidateOutput,ts);

testOutput = mapminmaxé¢versehormTestOutput,ts);

% Plot Regression

figure

postreg(( trainOutput,validateOutput,testOutput ),
t(:,trainSamples.indices),t(;,validateSampleBades),t(:,testSamples.indices)));
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